
MATLAB® Compiler™
MATLAB® Compiler™ Excel® Add-In User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ Excel® Add-In User's Guide
© COPYRIGHT 2015–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online Only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release R2017a)
September 2017 Online only Revised for Version 6.5 (Release R2017b)
March 2018 Online only Revised for Version 6.6 (Release R2018a)
September 2018 Online only Revised for Version 7.0 (Release R2018b)
March 2019 Online only Revised for Version 7.0.1 (Release R2019a)
September 2019 Online only Revised for Version 7.1 (Release R2019b)
March 2020 Online only Revised for Version 8.0 (Release R2020a)
September 2020 Online only Revised for Version 8.1 (Release R2020b)
March 2021 Online only Revised for Version 8.2 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Create Excel Add-Ins
1

Create Excel Add-In . 1-2

Create Add-In Containing a Custom Function for Use Within Excel 1-4
Create a MATLAB Function . 1-4
Create Excel Add-In Using Library Compiler App 1-4
Create Excel Add-In Using compiler.build.excelAddIn 1-5
Test the Add-In in Excel . 1-6

Getting Started
2

How Excel Add-In for MATLAB Compiler Works . 2-2

MATLAB Compiler for Microsoft Excel Add-In Prerequisites 2-3
Your Role in the Deployment Process . 2-3
Products, Compilers, and IDE Installation . 2-4
Macro Execution Security Levels in Microsoft Excel 2-4
Deployment Target Architectures and Compatibility 2-4
Dependency and Non-Compilable Code Considerations 2-5
For More Information . 2-5

Choosing Function Deployment Workflow . 2-6
Is Your Function Ready for Deployment? . 2-6
Other Examples . 2-6

Create Excel Add-In from MATLAB . 2-7
Create Function in MATLAB . 2-7
Create Excel Add-In Using Library Compiler App 2-7
Package the Application . 2-9

Integrate an Add-In and COM Component with Microsoft Excel 2-11
Files Necessary for Deployment . 2-11
Add-In and COM Component Registration . 2-11
COM Component Incorporation into Microsoft Excel using the Function

Wizard . 2-12
MATLAB Runtime . 2-12
Add-In Installation and Distribution . 2-13

Next Steps . 2-15

iii

Contents

Customizing a Compiler Project
3

Customize an Application . 3-2
Customize the Installer . 3-2
Determine Data Type of Command-Line Input (For Packaging Standalone

Applications Only) . 3-4
Manage Required Files in Compiler Project . 3-4
Sample Driver File Creation . 3-5
Specify Files to Install with Application . 3-6
Additional Runtime Settings . 3-7

Manage Support Packages . 3-9
Using a Compiler App . 3-9
Using the Command Line . 3-9

The Function Wizard
4

Execute Functions and Create Macros . 4-2
What Can the Function Wizard Do for Me? . 4-3
Installation of the Function Wizard . 4-3
Function Wizard Start-Up . 4-4
Workflow Selection for MATLAB Functions Ready for Deployment 4-5
Defining Functions Ready to Execute . 4-6
Function Execution . 4-14
Macro Creation . 4-14
Macro Execution . 4-14
Microsoft Visual Basic Code Access (Optional Advanced Task) 4-15
For More Information . 4-16

End-to-End Deployment of MATLAB Function . 4-17
What Can the Function Wizard Do for Me? . 4-18
Example File Copying . 4-19
mymagic Testing . 4-19
Installation of the Function Wizard . 4-20
Function Wizard Start-Up . 4-21
Workflow Selection for Prototyping and Debugging MATLAB Functions . 4-22
New MATLAB Function Definition . 4-24
MATLAB Function Prototyping and Debugging . 4-33
Function Execution from MATLAB . 4-33
Microsoft Excel Add-In and Macro Creation Using the Function Wizard . 4-34
Function Execution from the Deployed Component 4-35
Macro Execution . 4-36
Microsoft Excel Add-In and Macro Packaging using the Function Wizard

. 4-36
Microsoft Visual Basic Code Access (Optional Advanced Task) 4-37
For More Information . 4-38

iv Contents

MATLAB Code Deployment
5

How Does MATLAB Deploy Functions? . 5-2

Dependency Analysis Using MATLAB Compiler . 5-3
Function Dependency . 5-3
Data File Dependency . 5-3
Exclude Files From Package . 5-4

MEX-Files, DLLs, or Shared Libraries . 5-5

Deployable Archive . 5-6
Additional Details . 5-7

Write Deployable MATLAB Code . 5-9
Packaged Applications Do Not Process MATLAB Files at Run Time 5-9
Do Not Rely on Changing Directory or Path to Control the Execution of

MATLAB Files . 5-10
Use isdeployed Functions To Execute Deployment-Specific Code Paths . . 5-10
Gradually Refactor Applications That Depend on Noncompilable Functions

. 5-10
Do Not Create or Use Nonconstant Static State Variables 5-10
Get Proper Licenses for Toolbox Functionality You Want to Deploy 5-11

Calling Shared Libraries in Deployed Applications 5-12

MATLAB Data Files in Compiled Applications . 5-13
Explicitly Including MATLAB Data files Using the %#function Pragma . . 5-13
Load and Save Functions . 5-13

Microsoft Excel Add-In Creation, Function Execution, and
Deployment

6
Supported Compilation Targets . 6-2

Microsoft Excel Add-In . 6-2
What Are Excel Add-In Components and When Should You Create Them?

. 6-2
MATLAB Compiler Limitations . 6-2

The Library Compiler and the Command Line Interface 6-3
Using Graphical Interface . 6-3
Using Command Line Interface . 6-3

Create Macros from MATLAB Functions . 6-4
Create Add-Ins and Macros with Single and Multiple Outputs 6-4
Work with Variable-Length Inputs and Outputs . 6-4

Execute Add-In and Graphical Function . 6-8
Execute an Add-In to Validate Nongraphical Function Output 6-8

v

Execute a Graphical Function . 6-8
Create Dialog Box and Error Message Macros . 6-11

Microsoft Excel Add-In Integration
7

Overview of the Integration Process . 7-2

Integrate Components Using Visual Basic Application 7-3
When to Use a Formula Function or a Subroutine 7-3
Initialize MATLAB Compiler Libraries with Microsoft Excel 7-3
Create an Instance of a Class . 7-4
Call the Methods of a Class Instance . 7-6
Program with Variable Arguments . 7-7
Modify Flags . 7-8
Handle Errors During a Method Call . 7-11

Build and Integrate Spectral Analysis Functions 7-13
Overview . 7-13
Building the Component . 7-13
Integrate the Component Using VBA . 7-14
Test the Add-In . 7-20
Package and Distribute the Add-In . 7-21
Install the Add-In . 7-22

For More Information . 7-23

Distribution to End Users
8

Distribute Your Add-Ins and COM Components to End Users 8-2
MATLAB Runtime . 8-2

Distribute Visual Basic Application . 8-4
Calling Compiled MATLAB Functions from Microsoft Excel 8-4
Improve Data Access Using the MATLAB Runtime User Data Interface and

COM Components . 8-5
MATLAB Runtime Component Cache and Deployable Archive Embedding

. 8-9
MATLAB Runtime Options . 8-11

For More Information . 8-12

vi Contents

Functions
9

Utility Library for Microsoft COM Components
10

Reference Utility Classes . 10-2

Class MWUtil . 10-3
Sub MWInitApplication(pApp As Object) . 10-3
Sub MWInitApplicationWithMCROptions(pApp As Object, [mcrOptionList])

. 10-4
Function IsMCRJVMEnabled() As Boolean . 10-5
Function IsMCRInitialized() As Boolean . 10-5
Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31]) 10-5
Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =

False], [pVar0], [pVar1], ..., [pVar31]) . 10-7
Sub MWDate2VariantDate(pVar) . 10-8

Class MWFlags . 10-10
Property ArrayFormatFlags As MWArrayFormatFlags 10-10
Property DataConversionFlags As MWDataConversionFlags 10-12
Sub Clone(ppFlags As MWFlags) . 10-13

Class MWStruct . 10-15
Sub Initialize([varDims], [varFieldNames]) . 10-15
Property Item([i0], [i1], ..., [i31]) As MWField . 10-16
Property NumberOfFields As Long . 10-17
Property NumberOfDims As Long . 10-18
Property Dims As Variant . 10-18
Property FieldNames As Variant . 10-18
Sub Clone(ppStruct As MWStruct) . 10-18

Class MWField . 10-20
Property Name As String . 10-20
Property Value As Variant . 10-20
Property MWFlags As MWFlags . 10-20
Sub Clone(ppField As MWField) . 10-20

Class MWComplex . 10-21
Property Real As Variant . 10-21
Property Imag As Variant . 10-21
Property MWFlags As MWFlags . 10-21
Sub Clone(ppComplex As MWComplex) . 10-22

Class MWSparse . 10-23
Property NumRows As Long . 10-23
Property NumColumns As Long . 10-23
Property RowIndex As Variant . 10-23
Property ColumnIndex As Variant . 10-23
Property Array As Variant . 10-23

vii

Property MWFlags As MWFlags . 10-23
Sub Clone(ppSparse As MWSparse) . 10-23

Class MWArg . 10-26
Property Value As Variant . 10-26
Property MWFlags As MWFlags . 10-26
Sub Clone(ppArg As MWArg) . 10-26

Enum mwArrayFormat . 10-27

Enum mwDataType . 10-28

Enum mwDateFormat . 10-29

Apps
11

Data Conversion
A

Data Conversion Rules . A-2

Array Formatting Flags . A-10

Data Conversion Flags . A-12
CoerceNumericToType . A-12
InputDateFormat . A-13
OutputAsDate As Boolean . A-13
DateBias As Long . A-13

Troubleshooting
B

Errors and Solutions . B-2
Excel Add-Ins Errors and Suggested Solutions . B-3
Required Locations to Develop and Use Components B-5
Microsoft Excel Errors and Suggested Solutions B-5
Function Wizard Problems . B-6

Deployment Product Terms . B-8

viii Contents

Create Excel Add-Ins

1

Create Excel Add-In
1 Type libraryCompiler at the MATLAB command line to open the Library Compiler app.
2 In the Library Compiler app project window, specify the files of the MATLAB application that

you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

4 Verify that the MATLAB function you are packing into an Excel add-in is mapped onto a class. You
can change the name from the default name Class 1 to something more meaningful.

5 Customize the packaged application and its appearance:

• Library information — Editable information about the deployed application. You can also
customize the standalone applications appearance by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer”.

• Additional installer options — Edit the default installation path for the generated installer
and selecting custom logo. See “Change the Installation Path” .

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application”.
• Additional runtime settings — Platform-specific options for controlling the generated

executable. See “Additional Runtime Settings”.
6 1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

1 Create Excel Add-Ins

1-2

For more information about the files generated in these folders, see “Files Generated
After Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

See Also

More About
• “Create Add-In Containing a Custom Function for Use Within Excel” on page 1-4

 Create Excel Add-In

1-3

Create Add-In Containing a Custom Function for Use Within
Excel

Supported Platform: Windows® only.

This example shows how to create a Microsoft® Excel add-in containing a custom function for use
within Excel. The custom function called mymagic returns an n-by-n matrix filled with positive
integers with equal row and column sums.

The function mymagic is written in MATLAB and packaged as an Excel add-in using the Library
Compiler app in MATLAB Compiler.

The add-in can be installed on a machine running Excel using the installer generated by the Library
Compiler app. Once installed, you add the add-in to your Excel workbook.

The machine where the add-in is installed does not require an installation of MATLAB. However, it
does require an installation of MATLAB Runtime. When installing the add-in on a machine, the
installer generated by the Library Compiler app will automatically install MATLAB Runtime.

Create a MATLAB Function
Create a MATLAB function named mymagic that returns an n-by-n matrix filled with positive integers
with equal row and column sums. Save the function in a file named mymagic.m.

function y = mymagic(x)

y = magic(x)

Test the function at the MATLAB command line.

m = mymagic(5)

m =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Excel Add-In Using Library Compiler App
1 Type libraryCompiler at the MATLAB command line to open the Library Compiler app.
2 In the TYPE section of the toolstrip, select Excel add-in as your target type.
3

In the EXPORTED FUNCTIONS section of the toolstrip, click to add the file mymagic.m to
the project.

• In the Library information section of the app, the library name is automatically updated to
mymagic, the class name is updated to Class1, and the method name to [y] =
mymagic(x).

• In the Files installed for your end user section of the app, the files installed when the add-
in is installed on a machine are automatically displayed. These files include:

1 Create Excel Add-Ins

1-4

• _install.bat
• mymagic.bas
• mymagic.xla
• mymagic_1_0.dll

4 Click Package to package the MATLAB function as an add-in.

• In the Save Project dialog box that opens, specify a project name and a location where you
want to save the project. Library Compiler saves your project and opens a Package dialog
box.

• When the packaging process is complete, three folders are generated in the target folder
location: for_redistribution, for_redistribution_files_only, and for_testing.

• The for_redistribution folder contains the installer file MyAppInstaller_web.exe that
installs the add-in and the MATLAB Runtime. The for_redistribution_files_only
folder contains the files that are installed on an end user's machine. These are the same files
that are installed by the installer. It contains the following files:

• _install.bat
• GettingStarted.html
• mymagic.bas
• mymagic.xla
• mymagic_1_0.dll

For more information about the folders, see “Files Generated After Packaging MATLAB
Functions”.

Create Excel Add-In Using compiler.build.excelAddIn

Note If you have already created an Excel add-in using the Library Compiler app, you can skip this
section. However, if you want to know how to create an add-in from the MATLAB command window
using a programmatic approach, follow these instructions.

1 Build the Excel add-in using the compiler.build.excelAddIn function and the mymagic.m
file that you wrote earlier. Use name-value arguments to generate the BAS and XLA files.
buildResults = compiler.build.standaloneApplication('mymagic.m',...
 'GenerateVisualBasicFile','on');

The compiler.build.Results object buildResults contains information on the build type,
generated files, and build options.

2 The function generates the following files within a folder named mymagicexcelAddIn in your
current working directory:

• dlldata.c
• GettingStarted.html
• mymagic.def
• mymagic.bas
• mymagic.rc

 Create Add-In Containing a Custom Function for Use Within Excel

1-5

• mymagic.xla
• mymagic_1_0.dll
• mymagic_dll.cpp
• mymagic_idl.h
• mymagic_idl.idl
• mymagic_idl.tlb
• mymagic_idl_i.c
• mymagic_idl_p.c
• mymagicClass_com.cpp
• mymagicClass_com.hpp
• mccExcludedFiles.log
• mwcomtypes.h
• mwcomtypes_i.c
• mwcomtypes_p.c
• readme.txt
• requiredMCRProducts.txt
• unresolvedSymbols.txt

3 Additional options can be specified by using one or more comma-separated pairs of name-value
arguments in the compiler.build command.

• 'AddInName' — Name of the generated add-in.
• 'AddInVersion' — System level version of the generated add-in.
• 'AdditionalFiles' — Paths to additional files to include in the add-in.
• 'AutoDetectDataFiles' — Flag to automatically include data files.
• 'ClassName' — Name of the class.
• 'DebugBuild' — Flag to enable debug symbols.
• 'EmbedArchive' — Flag to embed the standalone archive in the generated executable.
• 'GenerateVisualBasicFile' — Flag to generate a Visual Basic® file (.bas) and an Excel

add-in file (.xla).
• 'OutputDirectory' — Path to the output directory that contains generated files.
• 'Verbose' — Flag to display progress information indicating compiler output during the

build process.

Test the Add-In in Excel

Note You may have to enable Trust access to the VBA project object model in Excel for the add-
in to work.

Add the Add-In to Excel

1 Open Microsoft Excel.
2 Click the File tab, click Options, and then click the Add-Ins category.

1 Create Excel Add-Ins

1-6

3 In the Manage box, click Excel Add-ins, and then click Go. The Add-Ins dialog box appears.
4 Click Browse and locate the add-in mymagic.xla in the for_redistribution_files_only

folder.
5 You are prompted to copy mymagic.xla to the Addins folder associated with your user name.

You can choose to copy the add-in or run it from the for_redistribution_files_only folder.
For this example, select, YES. The add-in is copied and added to your workbook.

6 Click OK to close the Add-Ins dialog box

Test the Add-In

1 Select a grid of 3-by-3 cells in the Excel workbook.
2 Enter the following custom function in the formula bar:

=mymagic(3)

As you type my in the formula bar, you see mymagic showing up as a custom function in Excel.
3 Press Ctrl+Shift+Enter on the keyboard.

You see the following output displayed in the cells:

8 1 6
3 5 7
4 9 2

 Create Add-In Containing a Custom Function for Use Within Excel

1-7

Getting Started

• “How Excel Add-In for MATLAB Compiler Works” on page 2-2
• “MATLAB Compiler for Microsoft Excel Add-In Prerequisites” on page 2-3
• “Choosing Function Deployment Workflow” on page 2-6
• “Create Excel Add-In from MATLAB” on page 2-7
• “Integrate an Add-In and COM Component with Microsoft Excel” on page 2-11
• “Next Steps” on page 2-15

2

How Excel Add-In for MATLAB Compiler Works
The compiler converts MATLAB functions to methods of a class that you define. From this class, the
compiler creates Excel add-in (an .xla file and a .bas file).

The MATLAB Compiler creates COM objects as Microsoft Excel add-in that are accessible from
Microsoft Excel through Visual Basic for Applications (VBA). The MATLAB Compiler integrates the
COM wrapper with the MATLAB Compiler-generated VBA code, saving you considerable development
resources and time.

COM is an acronym for Component Object Model, which is a Microsoft binary standard for object
interoperability. COM components use a common integration architecture that provides a consistent
model across multiple applications. All Microsoft Office applications support COM add-in.

Each COM object exposes a class to the Visual Basic programming environment. The class contains a
set of functions called methods. These methods correspond to the original MATLAB functions
included in the project. MATLAB Compiler generated COM components contain a single class. This
class provides the interface to the MATLAB functions that you add to the class at build time. The
COM component provides a set of methods that wrap the MATLAB code and a DLL file.

The MATLAB Compiler generates supporting files. Include these supporting files when you package
and distribute an application. Include the MATLAB Runtime, which gives you access to an entire
library of MATLAB functions within one file.

For information about how MATLAB Compiler works, see “How Does MATLAB Deploy Functions?” on
page 5-2.

2 Getting Started

2-2

MATLAB Compiler for Microsoft Excel Add-In Prerequisites

In this section...
“Your Role in the Deployment Process” on page 2-3
“Products, Compilers, and IDE Installation” on page 2-4
“Macro Execution Security Levels in Microsoft Excel” on page 2-4
“Deployment Target Architectures and Compatibility” on page 2-4
“Dependency and Non-Compilable Code Considerations” on page 2-5
“For More Information” on page 2-5

Your Role in the Deployment Process
The table Application Deployment Roles, Goals, and Tasks describes the different roles, or jobs, that
MATLAB Compiler users typically perform. It also describes tasks they would most likely perform
when running the examples in this documentation.

You may occupy one or more of the following roles.

Application Deployment Roles, Goals, and Tasks

Role Knowledge Base Responsibilities
MATLAB programmer • Understand the end-user

business requirements and
the mathematical models
that support them.

• MATLAB expert
• No IT experience

• Build a Microsoft Excel add-
in with MATLAB tools.

• Package the component for
distribution to customers.

• Pass the package to the
Microsoft Excel developer
for further integration into
the end-user environment.

.
Microsoft Excel developer • Little or no MATLAB

experience.
• Microsoft Excel expert.
• Proficient writing VB/VBA

code.

• Roll out the packaged
component and integrate it
into the end-user
environment.

• Write VB/VBA code to
complement or augment the
Excel add-in built by the
MATLAB programmer. Add
and modify code as needed.

• Uses Function Wizard to
customize the add-in and
create executable macros.

• Verify that the final
application executes reliably
in the end-user environment.

 MATLAB Compiler for Microsoft Excel Add-In Prerequisites

2-3

Products, Compilers, and IDE Installation
Install the following products to run the example described in this chapter:

• MATLAB
• MATLAB Compiler
• A supported C or C++ compiler

Macro Execution Security Levels in Microsoft Excel
If you will be creating macros and generating add-ins with MATLAB Compiler, adjust the security
settings accordingly in Microsoft Excel.

Failure to do so may result in add-ins not being generated or warning messages sent to MATLAB
Compiler

Depending on what version of Microsoft Excel you are using, do one of the following:

• For Microsoft Excel 2010 and newerExcel versions:

1 Click File > Options > Trust Center > Trust Center Settings > Macro Settings.
2 In Developer Macro Settings, select Trust access to the VBA project object model.

• For Microsoft Excel 2007:

1 Click the 2007 Excel ribbon button.
2 Click Excel Options > Trust Center > Trust Center Settings > Macro Settings.
3 In Developer Macro Settings, select Trust access to the VBA project object model.

• For Microsoft Excel 2003:

1 Click
Tools > Macro > Security.

2 For Security Level, select Medium.

Deployment Target Architectures and Compatibility
Before you deploy a component with MATLAB Compiler, consider if your target machines are 32-bit
or 64-bit.

Applications developed on one architecture must be compatible with the architecture on the system
where they are deployed.

For example, if you have a 64-bit system, you usually install a 64-bit version of MATLAB (and most
other applications), by default. Running functions you have developed with a 64-bit version of
MATLAB requires a Function Wizard installed with a 64-bit version of Microsoft Excel.

Migration Considerations for 32-bit and 64-bit Microsoft Excel

Add-ins created with MATLAB Compiler are compatible with both 32–bit and 64–bit versions of
Microsoft Excel. MATLAB Compiler itself is in 64–bit only.

2 Getting Started

2-4

https://www.mathworks.com/support/compilers.html

Dependency and Non-Compilable Code Considerations
Before you deploy your code, examine the code for dependencies on functions that may not be
compatible with MATLAB Compiler.

For more detailed information about dependency analysis (depfun) and how MATLAB Compiler
evaluates MATLAB code prior to compilation, see “Write Deployable MATLAB Code”.

For More Information
If you... See...
Want to verify your MATLAB code or function can
be deployed successfully

“Write Deployable MATLAB Code”

Know your function is deployable and want to
select a Getting Started workflow

“Choosing Function Deployment Workflow” on
page 2-6

 MATLAB Compiler for Microsoft Excel Add-In Prerequisites

2-5

Choosing Function Deployment Workflow
In this section...
“Is Your Function Ready for Deployment?” on page 2-6
“Other Examples” on page 2-6

Is Your Function Ready for Deployment?
If These Statements are True... See...
• I have a MATLAB function that conforms

to guidelines in “Write Deployable
MATLAB Code”.

• I want to create a Microsoft Excel
compatible add-in from my existing
MATLAB function.

• I have tested and debugged my MATLAB
function with MATLAB.

See “Create Excel Add-In from MATLAB” on page 2-
7 to build your add-in
and
“Integrate an Add-In and COM Component with
Microsoft Excel” on page 2-11 to execute the newly
built add-in and create macros and associated GUIs
with the Function Wizard and Microsoft Excel.

• I have not yet developed a MATLAB
function for deployment as an add-in, or I
am in the process of developing it.

• I have not tested my MATLAB function
thoroughly with MATLAB.

See “End-to-End Deployment of MATLAB Function”
on page 4-17 for an end-to-end example of creating,
debugging, building, and packaging MATLAB function
from scratch using the Function Wizard.

Other Examples
For other types of examples, see the following:

• “Execute a Graphical Function” on page 6-8
• “Create Dialog Box and Error Message Macros” on page 6-11
• “Work with Variable-Length Inputs and Outputs” on page 6-4
• MATLAB Central. Set the Search field to File Exchange and search for one or more of the

following:

• InterpExcelDemo
• MatrixMathExcelDemo
• ExcelCurveFit

2 Getting Started

2-6

https://www.mathworks.com/matlabcentral/

Create Excel Add-In from MATLAB
Supported Platform: Windows only.

This example shows how to generate a Microsoft Excel add-in from MATLAB. You package the
prewritten function that computes a magic square. MATLAB Compiler produces an installer that
installs both the add-in and all the required dependencies on a target system. The target system does
not require a licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want deployed as a standalone application. For this
example, open mymagic.m located in matlabroot\toolbox\matlabxl\examples\xlmagic.

function y = mymagic(x)

y = magic(x)

At the MATLAB command prompt, enter mymagic(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Excel Add-In Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler. In the MATLAB Compiler project window, click Excel
Add-in.

Alternately, you can open the Library Compiler app by entering libraryCompiler at the
MATLAB prompt.

2 In the Library Compiler app project window, specify the files of the MATLAB application that
you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

 Create Excel Add-In from MATLAB

2-7

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer.

4 Verify that the function defined in mymagic.m is mapped into Class1.

5 Customize the packaged application and its appearance:

• Library information — Editable information about the deployed application. The generated
installer uses this information to populate the installed application metadata. See “Customize
the Installer”.

• Additional installer options — Edit the default installation path for the generated installer
and selecting custom logo. See “Change the Installation Path” .

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.

See “Specify Files to Install with Application”.
• Additional runtime settings — Platform-specific options for controlling the generated

executable. See “Additional Runtime Settings”.

2 Getting Started

2-8

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

See Also
libraryCompiler

 Create Excel Add-In from MATLAB

2-9

More About
• “Execute Functions and Create Macros” on page 4-2

2 Getting Started

2-10

Integrate an Add-In and COM Component with Microsoft Excel
In this section...
“Files Necessary for Deployment” on page 2-11
“Add-In and COM Component Registration” on page 2-11
“COM Component Incorporation into Microsoft Excel using the Function Wizard” on page 2-12
“MATLAB Runtime” on page 2-12
“Add-In Installation and Distribution” on page 2-13

Key Tasks for the Microsoft Excel End User

Task Reference
Verify that you have received all necessary files
from the MATLAB programmer.

“Files Necessary for Deployment” on page 2-11

Verify registry permissions for the add-in file and
associated component.

“Add-In and COM Component Registration” on
page 2-11

Execute your generated functions and create
macros.

“Execute Functions and Create Macros” on page
4-2

Install MATLAB Runtime on target systems and
update system paths.

“MATLAB Runtime” on page 2-12

Use the Excel add-in. “Add-In Installation and Distribution” on page 2-
13

Files Necessary for Deployment
Before beginning, verify that you have access to the following files:

• The MCR Installer on page 2-12. For locations of all the MATLAB Runtime installers, run the
mcrinstaller command.

• .xla file (the add-in)
• .bas file (the generated VBA code)
• .dll file
• readme.txt

Add-In and COM Component Registration
When you create your COM component, it is registered in either HKEY_LOCAL_MACHINE or
HKEY_CURRENT_USER, based on your log-in privileges.

If you find you need to change your run-time permissions due to security standards imposed by
Microsoft or your installation, you can do one of the following before deploying your COM component
or add-in:

• Log on as administrator before running your COM component or add-in
• Run the following mwregsvr command prior to running your COM component or add-in, as

follows:

 Integrate an Add-In and COM Component with Microsoft Excel

2-11

matlab: mcrinstaller

mwregsvr [/u] [/s] [/useronly] project_name.dll

where:

• /u allows any user to unregister a COM component or add-in for this server
• /s runs this command silently, generating no messages. This is helpful for use in silent

installations.
• /useronly allows only the currently logged-in user to run the COM component or add-in on

this server

Caution If your COM component is registered in the USER hive, it will not be visible to Windows
Vista™ or Windows 7 users running as administrator on systems with UAC (User Access
Control) enabled.

If you register a component to the USER hive under Windows 7 or Windows Vista, your COM
component may fail to load when running with elevated (administrator) privileges.

If this occurs, do the following to re-register the component to the LOCAL MACHINE hive:

1 Unregister the component with this command:

mwregsvr /u /useronly my_dll.dll
2 Reregister the component to the LOCAL MACHINE hive with this command:

mwregsvr my_dll.dll

COM Component Incorporation into Microsoft Excel using the Function
Wizard
Now that your add-in and COM component have been created, use the Function Wizard to integrate
the COM component into Microsoft Excel.

See “Execute Functions and Create Macros” on page 4-2 for a complete example of how to execute
functions and create macros using the Magic Square example in this chapter.

MATLAB Runtime
MATLAB Runtime is an execution engine made up of the same shared libraries MATLAB uses to
enable execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime is available to download from the web to simplify the distribution of your
applications created using the MATLAB Compiler or the MATLAB Compiler SDK™. Download the
MATLAB Runtime from the MATLAB Runtime product page or use the
compiler.runtime.download MATLAB function.

The MATLAB Runtime installer performs the following actions:

1 Install the MATLAB Runtime.
2 Install the component assembly in the folder from which the installer is run.
3 Copy the MWArray assembly to the Global Assembly Cache (GAC).

2 Getting Started

2-12

https://www.mathworks.com/products/compiler/matlab-runtime.html

MATLAB Runtime Prerequisites

1 The MATLAB Runtime installer requires administrator privileges to run.
2 The version of MATLAB Runtime that runs your application on the target computer must be the

same as the version of MATLAB Compiler or MATLAB Compiler SDK that built the deployed code,
at the same update level or newer.

3 Do not install the MATLAB Runtime in MATLAB installation directories.
4 The MATLAB Runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB Runtime in the generated installer using one of the
compiler apps. The generated installer contains all files needed to run the standalone application or
shared library built with MATLAB Compiler or MATLAB Compiler SDK and properly lays them out on
a target system.

1 On the Packaging Options section of the compiler interface, select one or both of the following
options:

• Runtime downloaded from web — This option builds an installer that downloads the
MATLAB Runtime installer from the MathWorks website.

• Runtime included in package — The option includes the MATLAB Runtime installer in the
generated installer.

2 Click Package.
3 Distribute the installer to end users.

Install the MATLAB Runtime

For instructions on how to install the MATLAB Runtime on a system, see “Install and Configure
MATLAB Runtime”.

If you are given an installer containing the compiled artifacts, then MATLAB Runtime is installed
along with the application or shared library. If you are given just the raw binary files, you must
download and run the MATLAB Runtime installer.

Note On Windows, paths are set automatically by the installer. If you are running on a platform other
than Windows, you must either modify the path on the target machine or use a shell script to launch
the compiled application. Setting the paths enables your application executable to find MATLAB
Runtime. For more information on setting the path, see “Set MATLAB Runtime Path for Run-Time
Deployment”.

Add-In Installation and Distribution
Since Microsoft Excel add-ins are written directly to the distrib folder by MATLAB Compiler, you
and your end users install them exactly as you installed the Function Wizard in “Installation of the
Function Wizard” on page 4-3.

 Integrate an Add-In and COM Component with Microsoft Excel

2-13

Calling Add-In Code from the Excel Spreadsheet

To run the executable code from a cell in the Excel spreadsheet, invoke the add-in name with a
method call. For example, if you deployed a piece of MATLAB code called mymagic.m, or a figure
called mymagic.fig, you invoke that code by entering the following in a cell in the spreadsheet:

=mymagic()

Tip If the method call does not evaluate immediately, press Ctrl, Shift, and Enter simultaneously.

2 Getting Started

2-14

Next Steps
MATLAB Compiler includes several examples, in addition to the magic square example. You can find
these examples in folders in matlabroot\toolbox\matlabxl\examples\. The following table
identifies examples by folder:

For Example Files Relating
To...

Find Example Code in
Folder...

For Example Documentation
See...

Magic Square Example xlmagic “Create Excel Add-In from
MATLAB” on page 2-7
“Integrate an Add-In and COM
Component with Microsoft
Excel” on page 2-11

Variable-Length Argument
Example

xlmulti “Work with Variable-Length
Inputs and Outputs” on page 6-
4

Calling Compiled MATLAB
Functions from Microsoft Excel

xlbasic “Calling Compiled MATLAB
Functions from Microsoft Excel”
on page 8-4

Spectral Analysis Example xlspectral “Build and Integrate Spectral
Analysis Functions” on page 7-
13

The following topics detail some of the more common tasks you perform as you continue to develop
your applications.

To: See:
Try more examples using the MATLAB Compiler MATLAB Central. Set the Search field to File

Exchange and search for one or more of the
following:

• InterpExcelDemo
• MatrixMathExcelDemo
• ExcelCurveFit

Learn how to write MATLAB code that is
optimized for deployability

“Write Deployable MATLAB Code”

Work with functions having graphical output “Execute a Graphical Function” on page 6-8
Work with functions having variable inputs and
output

“Work with Variable-Length Inputs and Outputs”
on page 6-4

Create displayable dialog boxes and error
messages

“Create Dialog Box and Error Message Macros”
on page 6-11

Troubleshoot common error messages “Errors and Solutions” on page B-2
Integrate your application into your enterprise
environment by enhancing your application's
generated Visual Basic code

“Integrate Components Using Visual Basic
Application” on page 7-3

 Next Steps

2-15

https://www.mathworks.com/matlabcentral/

Customizing a Compiler Project

• “Customize an Application” on page 3-2
• “Manage Support Packages” on page 3-9

3

Customize an Application
You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
• Version: The default value is 1.0.
• Author name: Name of the developer.
• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For example, if the

company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.
• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page of the
installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

3 Customizing a Compiler Project

3-2

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target
system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux® /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

 Customize an Application

3-3

A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Determine Data Type of Command-Line Input (For Packaging
Standalone Applications Only)
When an executable standalone application is run in the command prompt, the default input type is
char. You can keep this default, or choose to interpret all inputs as numeric MATLAB doubles.

To pass inputs to the standalone application as MATLAB character vectors, select Treat all inputs to
the app as MATLAB character vectors. In this case, you must include code to convert char to a
numeric MATLAB type in the MATLAB function to be deployed as a standalone application.

To pass inputs to the standalone application as numeric MATLAB variables, select Treat all inputs to
the app as numeric MATLAB doubles. option in the Application Compiler App. Thus, you do not
need to include code to convert char to a numeric MATLAB type. Non numeric inputs to the
application may result in an error.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

3 Customizing a Compiler Project

3-4

If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java® package
• .NET assembly
• Python® package

The sample driver file creation feature in Library Compiler uses MATLAB code to generate sample
driver files in the target language. The sample driver files are used to implement the generated
shared libraries into an application in the target language. In the app, click Create New Sample to
automatically generate a new MATLAB script, or click Add Existing Sample to upload a MATLAB
script that you have already written. After you package your functions, a sample driver file in the
target language is generated from your MATLAB script and is saved in
for_redistribution_files_only\samples. Sample driver files are also included in the installer
in for_redistribution.

 Customize an Application

3-5

To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you can edit it as necessary based
on the behavior of your exported functions. The sample MATLAB files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell

array.
• Data must be saved as a local variable and then passed to the exported function in the sample file

code.
• Sample file code should not require user interaction.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

You can also choose not to include a sample driver file at all during the packaging step. If you create
your own driver code in the target language, you can later copy and paste it into the appropriate
directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

3 Customizing a Compiler Project

3-6

When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Standalone
Applications

• Do not display the
Windows Command
Shell (console) for
execution — If you
select this option on a
Windows platform,
when you double-click
the application from
the file explorer, the
application window
opens without a
command prompt.

• Create log file —
Generate a MATLAB
log file for the
application. The
packaged application
can't create a log file if
installed in the C:
folder on Windows
because the
application does not
have write permission
in that folder.

 Customize an Application

3-7

Type of Packaged
Application

Description Additional Runtime Settings Options

Excel Add-Ins • Register the
component for the
current user
(Recommended for
non-admin users) —
This option enables
registering the
component for the
current user account.
It is provided for users
without admin rights.

• Create log file —
Generate a MATLAB
log file for the
application. The
packaged application
can't create a log file if
installed in the C:
folder on Windows
because the
application does not
have write permission
in that folder.

See Also
applicationCompiler | libraryCompiler

More About
• “Create Standalone Application from MATLAB”
• “Create Excel Add-In from MATLAB” on page 2-7
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)

3 Customizing a Compiler Project

3-8

Manage Support Packages
Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of

the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

 Manage Support Packages

3-9

support package folder. For example, if your function uses the OS Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

3 Customizing a Compiler Project

3-10

The Function Wizard

• “Execute Functions and Create Macros” on page 4-2
• “End-to-End Deployment of MATLAB Function” on page 4-17

4

Execute Functions and Create Macros
In this section...
“What Can the Function Wizard Do for Me?” on page 4-3
“Installation of the Function Wizard” on page 4-3
“Function Wizard Start-Up” on page 4-4
“Workflow Selection for MATLAB Functions Ready for Deployment” on page 4-5
“Defining Functions Ready to Execute” on page 4-6
“Function Execution” on page 4-14
“Macro Creation” on page 4-14
“Macro Execution” on page 4-14
“Microsoft Visual Basic Code Access (Optional Advanced Task)” on page 4-15
“For More Information” on page 4-16

Warning The option to build and package MATLAB code from within the Function Wizard for Excel
add-ins will be removed in a future release. To create an Excel add-in, use the Library Compiler app.

Not recommended starting in R2020a

If your MATLAB function is ready to be deployed on page 5-9 and you have already built your add-
in and COM component with the Deployment Tool on page 6-3, follow this workflow to incorporate
your built COM component into Microsoft Excel using the Function Wizard. To follow the workflow in
this section effectively, you must run “Create Excel Add-In from MATLAB” on page 2-7.

The Function Wizard also allows you to iteratively test, develop, and debug your MATLAB function.
Using this end-to-end workflow assumes you are still in the process of developing your MATLAB
function for deployment. See “End-to-End Deployment of MATLAB Function” on page 4-17 for
complete instructions for this workflow.

See “Choosing Function Deployment Workflow” on page 2-6 for further details.

4 The Function Wizard

4-2

Key Tasks for the End User

Task Reference
1. Install the Function Wizard. “Installation of the Function Wizard” on page 4-

3
2. Start the Function Wizard. “Function Wizard Start-Up” on page 4-4
3. Select the option to incorporate your built
COM component into Microsoft Excel.

“Workflow Selection for MATLAB Functions
Ready for Deployment” on page 4-5

4. Define the new MATLAB function you want to
prototype by adding it to the Function Wizard and
establishing input and output ranges.

“Defining Functions Ready to Execute” on page 4-
6

5. Test your MATLAB function by executing it
with the Function Wizard.

“Function Execution” on page 4-14

6. Create a macro. “Macro Creation” on page 4-14
7. Execute the macro you created using the
Function Wizard.

“Macro Execution” on page 4-14

8. Optionally inspect or modify the Microsoft
Visual Basic code you generated with the COM
component. Optionally, attach the macro you
created to a GUI button.

“Microsoft Visual Basic Code Access (Optional
Advanced Task)” on page 4-15

What Can the Function Wizard Do for Me?
The Function Wizard enables you to pass Microsoft Excel (Excel 2000 or later) worksheet values to a
compiled MATLAB model and then return model output to a cell or range of cells in the worksheet.

The Function Wizard provides an intuitive interface to Excel worksheets. You do not need previous
knowledge of Microsoft Visual Basic for Applications (VBA) programming.

The Function Wizard reflects any changes that you make in the worksheets, such as range selections.
You also use the Function Wizard to control the placement and output of data from MATLAB functions
to the worksheets.

Note The Function Wizard does not currently support the MATLAB sparse, and complex data
types.

Installation of the Function Wizard
Before you can use the Function Wizard, you must first install it as an add-in that is accessible from
Microsoft Excel.

After you install the Function Wizard, the entry MATLAB Functions appears as an available
Microsoft Excel add-in button.

Using Microsoft Excel 2010 or newer versions of Excel

1 Click the File tab.
2 On the left navigation pane, select Options.

 Execute Functions and Create Macros

4-3

3 In the Excel Options dialog box, on the left navigation pane, select Add-Ins.
4 In the Manage drop-down, select Excel Add-Ins, and click Go.
5 In the Add-Ins dialog box, click Browse.
6 Browse to matlabroot/toolbox/matlabxl/matlabxl/arch, and select

FunctionWizard2007.xlam. Click OK.
7 In the Excel Add-Ins dialog, verify that the entry MATLAB Compiler Function Wizard is

selected. Click OK.

The Home tab of the Microsoft Excel Ribbon should now contain the Function Wizard tile. See “The
Home Tab of the Microsoft Office Ribbon with Function Wizard Installed” on page 4-5.

Using Excel 2007

1 Start Microsoft Excel if it is not already running.
2 Click the Office Button

(

) and select Excel Options.
3 In the left pane of the Excel Options dialog box, click Add-Ins.
4 In the right pane of the Excel Options dialog box, select Excel Add-ins from the Manage drop-

down box.
5 Click Go.
6 Click Browse. Navigate to matlabroot\toolbox\matlabxl\matlabxl\arch and select

FunctionWizard2007.xlam. Click OK.
7 In the Excel Add-Ins dialog box, verify that the entry MATLAB Compiler Function Wizard is

selected. Click OK.

Using Excel 2003

1 Select Tools > Add-Ins from the Excel main menu.
2 If the Function Wizard was previously installed, MATLAB Compiler Function Wizard appears

in the list. Select the item, and click OK.

If the Function Wizard was not previously installed, click Browse and navigate to matlabroot
\toolbox\matlabxl\matlabxl folder. Select FunctionWizard.xla. Click OK to proceed.

Function Wizard Start-Up
Start the Function Wizard in one of the following ways. When the wizard has initialized, the Function
Wizard Start Page dialog box displays.

Using Microsoft Excel 2007 or newer versions of Excel

In Microsoft Excel, on the Microsoft Office ribbon, on the Home tab, select Function Wizard.

4 The Function Wizard

4-4

The Home Tab of the Microsoft Office Ribbon with Function Wizard Installed

You can also access Function Wizard from the File tab.

1 Select File > Options > Add-Ins from the Excel main menu.
2 Select Function Wizard.

The Function Wizard Start Page Dialog Box

Workflow Selection for MATLAB Functions Ready for Deployment
After you have installed on page 4-3 and started on page 4-4 the Function Wizard, do the following:

 Execute Functions and Create Macros

4-5

1 From the Function Wizard Start Page, select the option I have an Add-in component that was
built in MATLAB with the Deployment Tool that I want to integrate into a workbook.

2 Click OK. The Function Wizard Control Panel opens with the Add Function button enabled.

The Function Wizard Control Panel for Working with MATLAB Functions Ready for Deployment

Tip To return to the Function Wizard Start Page, click Start Over.

Defining Functions Ready to Execute
1 Define the function you want to execute to the Function Wizard. Click Add Function in the Set

Up Functions area of the Function Wizard Control Panel. The MATLAB Components dialog box
opens.

2 In the Available Components area of the MATLAB Components dialog box, select the name of
your component (xlmagic) from the drop-down box.

3 Select the function you want to execute (mymagic) from the box labeled Functions for Class
xlmagic.

4 Click Add Function. The Function Properties dialog box opens.

4 The Function Wizard

4-6

Tip The Function Syntax and Help area, in the Function Properties dialog box, displays the
first help text line (sometimes called the H1 line) in a MATLAB function. Displaying these
comments in the Function Properties dialog box can be helpful when deploying new or unfamiliar
MATLAB functions to end-users.

5 Define input argument properties as follows.

a On the Input tab, click Set Input Data. The Input Data for n dialog box opens.

b Specify a Range or Value by selecting the appropriate option and entering the value. If the
argument refers to a structure array (struct), select the option This is a MATLAB
structure array argument. See “Working with Struct Arrays” on page 4-10 for
information on assigning ranges and values to fields in a struct array.

Caution Avoid selecting ranges using arrow keys. If you must use arrow keys to select
ranges, apply the necessary fix from the Microsoft site: https://support.microsoft.com/kb/
291110.

Note Select the Auto Recalculate on Change option to force Microsoft Excel to
automatically recalculate the spreadsheet data each time it changes.

c Click OK.

Tip To specify how MATLAB Compiler for Excel add-ins handles blank cells (or cells containing
no data), see “Empty Cell Value Control” on page 4-9.

 Execute Functions and Create Macros

4-7

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

6 Define output argument properties as follows.

a On the Output tab, click Set Output Data. The Output Data for y dialog box appears,
where y is the name of the output variable you are defining properties of.

Tip You can also specify MATLAB Compiler to Auto Resize, Transpose or output your data
in date format (Output as date). To do so, select the appropriate option in the Argument
Properties for y dialog box.

b Specify a Range. Alternately, select a range of cells on your Excel sheet; the range will be
entered for you in the Range field.

Caution Avoid selecting ranges using arrow keys. If you must use arrow keys to select
ranges, apply the necessary fix from the Microsoft site: https://support.microsoft.com/kb/
291110.

c Select Auto Resize if it is not already selected.
d Click Done in the Output Data for y dialog box.
e Click Done in the Function Properties dialog box.

4 The Function Wizard

4-8

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

mymagic now appears in the Active Functions list of the Function Wizard Control Panel.

Empty Cell Value Control

You can specify how MATLAB Compiler processes empty cells, allowing you to assign undefined or
unrepresented (NaN, for example) data values to them.

To specify how to handle empty cells, do the following.

1 Click Options in the Input Data for N dialog box.

The Input Conversion Options dialog box opens.

 Execute Functions and Create Macros

4-9

2 Click the Treat Missing Data As drop-down box.
3 Specify either Zero or NaN (Not a Number), depending on how you want to handle empty cells.

Working with Struct Arrays

To assign ranges to fields in a struct array, do the following:

1 If you have not already done so, select This is a MATLAB structure array argument in the
Input Data for n dialog box and click OK.

The Input Data for Structure Array Argument n dialog box opens.

4 The Function Wizard

4-10

2 The Function Wizard supports Vector and Two-dimensional struct arrays organized in either
Element by Element or Plane organization, for both input and output.

In the Input Data for Structure Array Argument n dialog box, do the following:

a In the Structure Array Organization area, select either Element by Element Organization
or Plane Organization.

b Click Add Field to add fields for each of your struct array arguments. The Field for
Structure Array Argument dialog box opens.

 Execute Functions and Create Macros

4-11

3 In the Field for Argument dialog box, do the following:

a In the Name field, define the field name. The Name you specify must match the field name
of the structure array in your MATLAB function.

b Specify the Range for the field.

Caution Avoid selecting ranges using arrow keys. If you must use arrow keys to select
ranges, apply the necessary fix from the Microsoft site: https://support.microsoft.com/kb/
291110.

4 The Function Wizard

4-12

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

c Click Done.

How Structure Arrays are Supported

MATLAB Compiler supports one and two-dimensional MATLAB structure arrays.

The product converts data passed into structure arrays in element-by-element organization or plane
organization. See MATLAB Programming Fundamentals for more information about all MATLAB data
types, including structures.

Deploying Structure Arrays as Inputs and Outputs

If you are a MATLAB programmer and want to deploy a MATLAB function with structure arrays as
input or output arguments, build Microsoft Excel macros using the Function Wizard and pass them
(with the Excel add-in and COM component) to the end users. If you can’t do this, let your end users
know:

• Which arguments are structure arrays
• Field names of the structure arrays

Using Macros with Struct Arrays

The macro generation feature of MATLAB Compiler for Excel add-ins works with struct arrays as
input or output arguments. See “Macro Creation” on page 4-14 if you have a MATLAB function you
are ready to deploy. See “Microsoft Excel Add-In and Macro Creation Using the Function Wizard” on
page 4-34 if you are using the Function Wizard to create your MATLAB function from scratch. See
“Choosing Function Deployment Workflow” on page 2-6 for more information on both workflows.

 Execute Functions and Create Macros

4-13

Function Execution
In the Execute Functions area of the Function Wizard Control Panel, click Execute to run mymagic.
Cells A1:E5 on the Excel sheet are automatically populated with the output of mymagic (a magic
square of dimension 5).

Macro Creation
Continuing the example, create a Microsoft Excel macro using the Function Wizard Control Panel:

1 In the Create Macros area of the control panel, enter mymagic in the Macro Name field.
2 Select the location of where to store the macro in the Store Macro drop-down box.
3 Enter a brief description of the macro's functionality in the Description field.
4 Click Create Macro.

A macro is created in the current Excel workbook.

Macro Execution
Run the macro you created in “Macro Creation” on page 4-14 by doing one of the following, after first
clearing cells A1:E5 (which contain the output of the Magic Square function you ran in “Function
Execution” on page 4-14).

Tip You may need to enable the proper security settings before running macros in Microsoft Excel.
For information about macro permissions and related error messages, see the “Errors and Solutions”
on page B-2 appendix.

Using Excel 2007 or newer versions of Excel
1 In Microsoft Excel, click View > Macros > View Macros.
2 Select mymagic from the Macro name drop-down box.
3 Click Run. Cells A1:E5 on the Excel sheet are automatically populated with the output of

mymagic.

Using Excel 2003
1 In Microsoft Excel, click Tools > Macro > Macros.
2 Select mymagic from the Macro name drop-down box.
3 Click Run. Cells A1:E5 on the Excel sheet are automatically populated with the output of

mymagic.

4 The Function Wizard

4-14

Microsoft Visual Basic Code Access (Optional Advanced Task)
Optionally, you may want to access the Visual Basic code or modify it, depending on your
programming expertise or the availability of an Excel developer. If so, follow these steps.

From the Excel main window, open the Microsoft Visual Basic editor by doing one of the following.
select Tools > Macro > Visual Basic Editor.

Using Excel 2007 or newer versions of Excel

1 Click Developer > Visual Basic.
2 When the Visual Basic Editor opens, in the Project - VBAProject window, double-click to expand

VBAProject (mymagic.xls).
3 Expand the Modules folder and double-click the Matlab Macros module.

This opens the Visual Basic Code window with the code for this project.

Using Excel 2003

1 Click Tools > Macro > Visual Basic Editor.
2 When the Visual Basic Editor opens, in the Project - VBAProject window, double-click to expand

VBAProject (mymagic.xls).
3 Expand the Modules folder and double-click the Matlab Macros module.

This opens the VB Code window with the code for this project.

Mapping a Macro to a GUI Button or Control (Optional)

To attach the macro to a GUI button, do the following:

1 Click Developer > Insert.
2 From the Form Controls menu, select the Button (Form Control) icon.

Tip Hover your mouse over the Form Controls menu to see the various control labels.
3 In the Assign Macros dialog box, select the macro you want to assign the GUI button to, and click

OK.

 Execute Functions and Create Macros

4-15

Attaching a Macro to a Button

For More Information
If you want to... See...
• Perform basic MATLAB Programmer tasks
• Understand how the deployment products

process your MATLAB functions
• Understand how the deployment products

work together
• Explore guidelines about writing deployable

MATLAB code

“Write Deployable MATLAB Code” on page 5-9

See more examples about building add-ins and
COM components

“Create Macros from MATLAB Functions” on
page 6-4

Learn how to customize and integrate the COM
component you built by modifying the Microsoft
Visual Basic code

“Integrate Components Using Visual Basic
Application” on page 7-3

4 The Function Wizard

4-16

End-to-End Deployment of MATLAB Function
In this section...
“What Can the Function Wizard Do for Me?” on page 4-18
“Example File Copying” on page 4-19
“mymagic Testing” on page 4-19
“Installation of the Function Wizard” on page 4-20
“Function Wizard Start-Up” on page 4-21
“Workflow Selection for Prototyping and Debugging MATLAB Functions” on page 4-22
“New MATLAB Function Definition” on page 4-24
“MATLAB Function Prototyping and Debugging” on page 4-33
“Function Execution from MATLAB” on page 4-33
“Microsoft Excel Add-In and Macro Creation Using the Function Wizard” on page 4-34
“Function Execution from the Deployed Component” on page 4-35
“Macro Execution” on page 4-36
“Microsoft Excel Add-In and Macro Packaging using the Function Wizard” on page 4-36
“Microsoft Visual Basic Code Access (Optional Advanced Task)” on page 4-37
“For More Information” on page 4-38

Warning The option to build and package MATLAB code from within the Function Wizard for Excel
add-ins will be removed in a future release. To create an Excel add-in, use the Library Compiler app.

Not recommended starting in R2020a

If you are still in the process of developing a MATLAB function that is not yet ready to be deployed,
you may find this example to be an appropriate introduction to using MATLAB Compiler for Excel
add-ins.

The Function Wizard allows you to iteratively test, develop, and debug your MATLAB function. It does
this by invoking MATLAB from the Function Wizard Control Panel.

Developing your function in an interactive environment ensures that it works in an expected manner,
prior to deployment to larger-scale applications. Usually, these applications are programmed by the
Excel Developer using an enterprise language like Microsoft Visual Basic.

Similar to the Magic Square example, the Prototyping and Debugging example develops a function
named mymagic, which wraps a MATLAB function, magic, which computes a magic square, a
function with a single multidimensional matrix output.

If your MATLAB function is ready to be deployed on page 5-9 and you have already built your add-
in and COM component with the Deployment Tool on page 6-3, see “Execute Functions and Create
Macros” on page 4-2.

 End-to-End Deployment of MATLAB Function

4-17

Key Tasks for the MATLAB Programmer

Task Reference
1. Review MATLAB Compiler for Excel add-ins
prerequisites, if you have not already done so.

“MATLAB Compiler for Microsoft Excel Add-In
Prerequisites” on page 2-3

2. Prepare to run the example by copying the
example files.

“Example File Copying” on page 4-19

3. Test the MATLAB function you want to deploy
as an add-in or COM component.

“mymagic Testing” on page 4-19

4. Install the Function Wizard. “Installation of the Function Wizard” on page 4-
20

5. Start the Function Wizard. “Function Wizard Start-Up” on page 4-4
6. Select the prototyping and debugging
workflow.

“Workflow Selection for Prototyping and
Debugging MATLAB Functions” on page 4-22

7. Define the new MATLAB function you want to
prototype by adding it to the Function Wizard and
establishing input and output ranges.

“New MATLAB Function Definition” on page 4-
24

8. Test your MATLAB function by executing it
with the Function Wizard.

“Function Execution from MATLAB” on page 4-
33

9. Prototype and Debug the MATLAB function if
needed, using MATLAB and the Function Wizard.

“MATLAB Function Prototyping and Debugging”
on page 4-33

10. Create the add-in and COM component, as
well as the macro, using the Function Wizard to
invoke MATLAB and the Deployment Tool.

“Microsoft Excel Add-In and Macro Creation
Using the Function Wizard” on page 4-34

11. Execute the your function from the newly
created component, to ensure the function's
behavior is identical to when it was tested.

“Function Execution from the Deployed
Component” on page 4-35

12. Execute the macro you created using the
Function Wizard.

“Macro Execution” on page 4-36

13. Package your deployable add-in and macro
using the Function Wizard to invoke MATLAB and
the Deployment Tool.

“Microsoft Excel Add-In and Macro Packaging
using the Function Wizard” on page 4-36

14. Optionally inspect or modify the Microsoft
Visual Basic code you generated with the COM
component. Optionally, attach the macro you
created to a GUI button.

“Microsoft Visual Basic Code Access (Optional
Advanced Task)” on page 4-37

What Can the Function Wizard Do for Me?
The Function Wizard enables you to pass Microsoft Excel (Excel 2000 or later) worksheet values to a
compiled MATLAB model and then return model output to a cell or range of cells in the worksheet.

The Function Wizard provides an intuitive interface to Excel worksheets. You do not need previous
knowledge of Microsoft Visual Basic for Applications (VBA) programming.

4 The Function Wizard

4-18

The Function Wizard reflects any changes that you make in the worksheets, such as range selections.
You also use the Function Wizard to control the placement and output of data from MATLAB functions
to the worksheets.

Note The Function Wizard does not currently support the MATLAB sparse, and complex data
types.

Example File Copying
All MATLAB Compiler examples reside in matlabroot\toolbox\matlabxl\examples\. The
following table identifies examples by folder:

For Example Files Relating
To...

Find Example Code in
Folder...

For Example Documentation
See...

Magic Square Example xlmagic “Integrate an Add-In and COM
Component with Microsoft
Excel” on page 2-11

Variable-Length Argument
Example

xlmulti “Work with Variable-Length
Inputs and Outputs” on page 6-
4

Calling Compiled MATLAB
Functions from Microsoft Excel

xlbasic “Calling Compiled MATLAB
Functions from Microsoft Excel”
on page 8-4

Spectral Analysis Example xlspectral “Build and Integrate Spectral
Analysis Functions” on page 7-
13

mymagic Testing
In this example, you test a MATLAB file (mymagic.m) containing the predefined MATLAB function
magic. You test to have a baseline to compare to the results of the function when it is ready to deploy.

1 In MATLAB, locate mymagic.m. See “Example File Copying” on page 4-19 for locations of
examples. The contents of the file are as follows:

function y = mymagic(x)
%MYMAGIC Magic square of size x.
% Y = MYMAGIC(X) returns a magic square of size x.
% This file is used as an example for the MATLAB Compiler product.

% Copyright 2001-2012 The MathWorks, Inc.

y = magic(x)
2 At the MATLAB command prompt, enter mymagic(5). View the resulting output, which appears

as follows:

17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3

 End-to-End Deployment of MATLAB Function

4-19

11 18 25 2 9

Installation of the Function Wizard
Before you can use the Function Wizard, you must first install it as an add-in that is accessible from
Microsoft Excel.

After you install the Function Wizard, the entry MATLAB Functions appears as an available
Microsoft Excel add-in button.

Using Microsoft Excel 2010 or newer versions of Excel

1 Click the File tab.
2 On the left navigation pane, select Options.
3 In the Excel Options dialog box, on the left navigation pane, select Add-Ins.
4 In the Manage drop-down, select Excel Add-Ins, and click Go.
5 In the Add-Ins dialog box, click Browse.
6 Browse to matlabroot/toolbox/matlabxl/matlabxl/arch, and select

FunctionWizard2007.xlam. Click OK.
7 In the Excel Add-Ins dialog, verify that the entry MATLAB Compiler Function Wizard is

selected. Click OK.

The Home tab of the Microsoft Excel Ribbon should now contain the Function Wizard tile. See “The
Home Tab of the Microsoft Office Ribbon with Function Wizard Installed” on page 4-5.

Using Excel 2007

1 Start Microsoft Excel if it is not already running.
2 Click the Office Button

(

) and select Excel Options.
3 In the left pane of the Excel Options dialog box, click Add-Ins.
4 In the right pane of the Excel Options dialog box, select Excel Add-ins from the Manage drop-

down box.
5 Click Go.
6 Click Browse. Navigate to matlabroot\toolbox\matlabxl\matlabxl\arch and select

FunctionWizard2007.xlam. Click OK.
7 In the Excel Add-Ins dialog box, verify that the entry MATLAB Compiler Function Wizard is

selected. Click OK.

Using Excel 2003

1 Select Tools > Add-Ins from the Excel main menu.
2 If the Function Wizard was previously installed, MATLAB Compiler Function Wizard appears

in the list. Select the item, and click OK.

If the Function Wizard was not previously installed, click Browse and navigate to matlabroot
\toolbox\matlabxl\matlabxl folder. Select FunctionWizard.xla. Click OK to proceed.

4 The Function Wizard

4-20

Function Wizard Start-Up
Start the Function Wizard in one of the following ways. When the wizard has initialized, the Function
Wizard Start Page dialog box displays.

Using Excel 2007 or newer versions of Excel

In Microsoft Excel, on the Microsoft Office ribbon, on the Home tab, select Function Wizard.

The Home Tab of the Microsoft Office Ribbon with Function Wizard Installed

You can also access Function Wizard from the File tab.

1 Select File > Options > Add-Ins from the Excel main menu.
2 Select Function Wizard.

 End-to-End Deployment of MATLAB Function

4-21

The Function Wizard Start Page Dialog Box

Workflow Selection for Prototyping and Debugging MATLAB Functions
After you have installed on page 4-20 and started on page 4-4 the Function Wizard, do the following.

1 From the Function Wizard Start Page dialog box, select I have one or more MATLAB
functions that I want to use in a workbook (MATLAB installation required). The New
Project option is selected by default. Enter a meaningful project name in the Project Name
field, like testmymagic, for example.

Tip Some customers find it helpful to assign a unique name as the Class Name (default is
Class1) and to assign a Version number for source control purposes.

2 Click OK. The Function Wizard Control Panel displays with the Add Function button enabled.

4 The Function Wizard

4-22

About Project Files

Keep in mind the following information about project files when working with the Function Wizard:

• The project files created by the Function Wizard are the same project files created and used by the
Deployment Tool (deploytool).

• The Function Wizard prompts you to specify a location for your project files when you open your
first new project. Project files are auto-saved to this location and may be opened in the future
through either the Deployment Tool or the Function Wizard.

• If you previously built a component using the Function Wizard, the wizard will prompt you to load
it.

Quitting the MATLAB Session Invoked by the Function Wizard

Avoid manually terminating the MATLAB session invoked by the Function Wizard. Doing so can
prevent you from using the Wizard's MATLAB-related features from your Excel session. If you want to
quit the remotely invoked MATLAB session, restart Excel.

 End-to-End Deployment of MATLAB Function

4-23

New MATLAB Function Definition
1 Add the function you want to deploy to the Function Wizard. Click Add in the Set Up Functions

area of the Function Wizard Control Panel. The New MATLAB Function dialog box appears.

2 Browse to locate your MATLAB function. Select the function and click Open.
3 In the New MATLAB Function dialog box, click Add. The Function Properties dialog box appears.

4 The Function Wizard

4-24

Tip The Function Syntax and Help area, in the Function Properties dialog box, displays the
first help text line (sometimes called the H1 line) in a MATLAB function. Displaying these
comments in the Function Properties dialog box can be helpful when deploying new or unfamiliar
MATLAB functions to end-users.

4 Define input argument properties as follows.

a On the Input tab, click Set Input Data. The Input Data for n dialog box appears.

 End-to-End Deployment of MATLAB Function

4-25

b Specify a Range or Value by selecting the appropriate option and entering the value.

Caution Avoid selecting ranges using arrow keys. If you must use arrow keys to select
ranges, apply the necessary fix from the Microsoft site: https://support.microsoft.com/kb/
291110.

c Click Done.

Tip To specify how MATLAB Compiler for Excel add-ins handles blank cells (or cells containing
no data), see “Empty Cell Value Control” on page 4-28.

5 Define output argument properties as follows.

a On the Output tab, click Set Output Data. The Output Data for y dialog box appears,
where x is the name of the output variable you are defining properties of.

4 The Function Wizard

4-26

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

Tip You can also specify MATLAB Compiler to Auto Resize, Transpose or output your data
in date format (Output as date). To do so, select the appropriate option in the Argument
Properties For y dialog box.

b Specify a Range. Alternately, select a range of cells on your Excel sheet; the range will be
entered for you in the Range field.

Caution Avoid selecting ranges using arrow keys. If you must use arrow keys to select
ranges, apply the necessary fix from the Microsoft site: https://support.microsoft.com/kb/
291110.

c Select Auto Resize if it is not already selected.
d Click Done in the Argument Properties For y dialog box.
e Click Done in the Function Properties dialog box. mymagic now appears in the Active

Functions list of the Function Wizard Control Panel.

 End-to-End Deployment of MATLAB Function

4-27

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

Empty Cell Value Control

You can specify how MATLAB Compiler processes empty cells, allowing you to assign undefined or
unrepresented (NaN, for example) data values to them.

To specify how to handle empty cells, do the following.

1 Click Options in the Input Data for N dialog box.

The Input Conversion Options dialog box opens.

4 The Function Wizard

4-28

2 Click the Treat Missing Data As drop-down box.
3 Specify either Zero or NaN (Not a Number), depending on how you want to handle empty cells.

Working with Struct Arrays

To assign ranges to fields in a struct array, do the following:

1 If you have not already done so, select This is a MATLAB structure array argument in the
Input Data for n dialog box and click OK.

The Input Data for Structure Array Argument n dialog box opens.

 End-to-End Deployment of MATLAB Function

4-29

2 The Function Wizard supports Vector and Two-dimensional struct arrays organized in either
Element by Element or Plane organization, for both input and output.

In the Input Data for Structure Array Argument n dialog box, do the following:

a In the Structure Array Organization area, select either Element by Element Organization
or Plane Organization.

b Click Add Field to add fields for each of your struct array arguments. The Field for
Structure Array Argument dialog box opens.

4 The Function Wizard

4-30

3 In the Field for Argument dialog box, do the following:

a In the Name field, define the field name. The Name you specify must match the field name
of the structure array in your MATLAB function.

b Specify the Range for the field.

Caution Avoid selecting ranges using arrow keys. If you must use arrow keys to select
ranges, apply the necessary fix from the Microsoft site: https://support.microsoft.com/kb/
291110.

 End-to-End Deployment of MATLAB Function

4-31

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

c Click Done.

How Structure Arrays are Supported

MATLAB Compiler supports one and two-dimensional MATLAB structure arrays.

The product converts data passed into structure arrays in element-by-element organization or plane
organization. See MATLAB Programming Fundamentals for more information about all MATLAB data
types, including structures.

Deploying Structure Arrays as Inputs and Outputs

If you are a MATLAB programmer and want to deploy a MATLAB function with structure arrays as
input or output arguments, build Microsoft Excel macros using the Function Wizard and pass them
(with the Excel add-in and COM component) to the end users. If you can’t do this, let your end users
know:

• Which arguments are structure arrays
• Field names of the structure arrays

Using Macros with Struct Arrays

The macro generation feature of MATLAB Compiler for Excel add-ins works with struct arrays as
input or output arguments. See “Macro Creation” on page 4-14 if you have a MATLAB function you
are ready to deploy. See “Microsoft Excel Add-In and Macro Creation Using the Function Wizard” on
page 4-34 if you are using the Function Wizard to create your MATLAB function from scratch. See
“Choosing Function Deployment Workflow” on page 2-6 for more information on both workflows.

4 The Function Wizard

4-32

MATLAB Function Prototyping and Debugging
Use the Function Wizard to interactively prototype and debug a MATLAB function.

Since mymagic calls the prewritten MATLAB magic function directly, it does not provide an
illustrative example of how to use the prototyping and debugging feature of MATLAB Compiler.

Following is an example of how you might use this feature with myprimes, a function containing
multiple lines of code.

Prototyping and Debugging with myprimes

For example, say you are in the process of prototyping code that uses the equation P =
myprimes(n). This equation returns a row vector of prime numbers less than or equal to n (a prime
number has no factors other than 1 and the number itself).

Your code uses P = myprimes(n) as follows:

function [p] = myprimes(n)

if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

 if p((k+1)/2)
 p(((k*k+1)/2):k:q) = 0;
 end

end

p = (p(p>0));

In designing your code, you want to handle various use cases. For example, you want to experiment
with scenarios that may assign a column vector value to the output variable p ((myprimes only
returns a row vector, as stated previously). You follow this general workflow:

1 Set a breakpoint in myprimes at the first if statement, using the GUI or dbstop, for instance.
2 On the Function Wizard Control Panel, in the Execute Functions area, click Execute. Execution

will stop at the previously set breakpoint. Note the value of p. Step-through and debug your code
as you normally would using the MATLAB Editor.

For more information about debugging MATLAB code, see “Debug a MATLAB Program”.

Function Execution from MATLAB
Test your deployable MATLAB function by executing it in MATLAB:

1 From the Function Wizard Control Panel, in the Execute Functions area, select Execute
MATLAB Functions in MATLAB.

2 Click Execute. In Excel, the Magic Square function executes, producing results similar to the
following.

 End-to-End Deployment of MATLAB Function

4-33

Microsoft Excel Add-In and Macro Creation Using the Function Wizard
The Function Wizard can automatically create a deployable Microsoft Excel add-in and macro. To
create your add-in in this manner, use one of the following procedures.

Creating an Add-In and Associated Excel Macro

To create both a deployable add-in and an associated Excel macro:

1 In the Function Wizard Control Panel dialog box, in the Create Component area, select Create
Both Excel Add-in Component and Excel Macro.

2 Enter mymagic in the Macro Name field.
3 Select the location of where to store the macro, using the Store Macro In drop-down box.
4 Enter a brief description of the macro's functionality in the Description field.
5 Click Create to build both the add-in (as well as the underlying COM component) and the

associated macro. The Deployment Tool Build dialog box appears, indicating the status of the
add-in and COM component compilation (build).

4 The Function Wizard

4-34

The Build Dialog

Creating a COM Component or a Macro Only Without Creating an Add-In

To create either a COM component or a macro without also creating the Excel add-in, do the
following

1 In the Function Wizard Control Panel dialog box, in the Create Component area, select either
MATLAB Excel Add-in Component Only or Create Excel Macro Only.

2 Enter mymagic in the Macro Name field.
3 Select the location of where to store the macro, using the Store Macro In drop-down box.
4 Enter a brief description of the macro's functionality in the Description field.
5 Click Create.

Function Execution from the Deployed Component
Execute your function as you did similarly in “Function Execution from MATLAB” on page 4-33, but
this time execute it from the deployed component to ensure it matches your previous output.

1 From the Function Wizard Control Panel, in the Execute Functions area, select Execute
MATLAB Functions from Deployed Component.

2 Click Execute. In Excel, the Magic Square function executes, producing results similar to the
following.

 End-to-End Deployment of MATLAB Function

4-35

Macro Execution
Run the macro you created in “Macro Creation” on page 4-14 by doing one of the following, after first
clearing cells A1:E5 (which contain the output of the Magic Square function you ran in “Function
Execution” on page 4-14).

Tip You may need to enable the proper security settings before running macros in Microsoft Excel.
For information about macro permissions and related error messages, see the “Errors and Solutions”
on page B-2 appendix.

Using Excel 2007 or newer versions of Excel

1 In Microsoft Excel, click View > Macros > View Macros.
2 Select mymagic from the Macro name drop-down box.
3 Click Run. Cells A1:E5 on the Excel sheet are automatically populated with the output of

mymagic.

Using Excel 2003

1 In Microsoft Excel, click Tools > Macro > Macros.
2 Select mymagic from the Macro name drop-down box.
3 Click Run. Cells A1:E5 on the Excel sheet are automatically populated with the output of

mymagic.

Microsoft Excel Add-In and Macro Packaging using the Function
Wizard
The Function Wizard can automatically package a deployable Microsoft Excel add-in and macro for
sharing. To package your add-in in this manner, use one of the following procedures.

1 After successfully building your component and add-in on page 4-34, in the Share Component
area of the Function Wizard Control Panel dialog box, review the files listed in the Files to
include in packaging field. Add Files or Remove Files to and from the package by clicking the
appropriate buttons.

2 To add access to the MATLAB Runtime installer to your package, select one of the options in the
MATLAB Runtime area. For information about the MATLAB Runtime and the MATLAB Runtime
installer, see “Install and Configure MATLAB Runtime”.

3 When you are ready to create your package, click Create Package.

4 The Function Wizard

4-36

Microsoft Visual Basic Code Access (Optional Advanced Task)
Optionally, you may want to access the Visual Basic code or modify it, depending on your
programming expertise or the availability of an Excel developer. If so, follow these steps.

From the Excel main window, open the Microsoft Visual Basic editor by doing one of the following.
select Tools > Macro > Visual Basic Editor.

Using Excel 2007 or newer versions of Excel

1 Click Developer > Visual Basic.
2 When the Visual Basic Editor opens, in the Project - VBAProject window, double-click to expand

VBAProject (mymagic.xls).
3 Expand the Modules folder and double-click the Matlab Macros module.

This opens the Visual Basic Code window with the code for this project.

Using Excel 2003

1 Click Tools > Macro > Visual Basic Editor.
2 When the Visual Basic Editor opens, in the Project - VBAProject window, double-click to expand

VBAProject (mymagic.xls).
3 Expand the Modules folder and double-click the Matlab Macros module.

This opens the VB Code window with the code for this project.

Mapping a Macro to a GUI Button or Control (Optional)

To attach the macro to a GUI button, do the following:

1 Click Developer > Insert.
2 From the Form Controls menu, select the Button (Form Control) icon.

Tip Hover your mouse over the Form Controls menu to see the various control labels.
3 In the Assign Macros dialog box, select the macro you want to assign the GUI button to, and click

OK.

 End-to-End Deployment of MATLAB Function

4-37

Attaching a Macro to a Button

For More Information
If you want to... See...
• Perform basic MATLAB Programmer tasks
• Understand how the deployment products

process your MATLAB functions
• Understand how the deployment products

work together
• Explore guidelines about writing deployable

MATLAB code

“Write Deployable MATLAB Code” on page 5-9

See more examples about building add-ins and
COM components

“Create Macros from MATLAB Functions” on
page 6-4

Learn more about the MATLAB Runtime “About the MATLAB Runtime”
Learn how to customize and integrate the COM
component you built by modifying the Microsoft
Visual Basic code

“Integrate Components Using Visual Basic
Application” on page 7-3“Build and Integrate
Spectral Analysis Functions” on page 7-13

4 The Function Wizard

4-38

MATLAB Code Deployment

• “How Does MATLAB Deploy Functions?” on page 5-2
• “Dependency Analysis Using MATLAB Compiler” on page 5-3
• “MEX-Files, DLLs, or Shared Libraries” on page 5-5
• “Deployable Archive” on page 5-6
• “Write Deployable MATLAB Code” on page 5-9
• “Calling Shared Libraries in Deployed Applications” on page 5-12
• “MATLAB Data Files in Compiled Applications” on page 5-13

5

How Does MATLAB Deploy Functions?
To deploy MATLAB functions, the compiler performs these tasks:

1 Analyzes files for dependencies using a dependency analysis function. Dependencies are files
included in the generated package and originate from functions called by the file. Dependencies
are affected by:

• File type — MATLAB, Java, MEX, and so on.
• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about dependency analysis, see “Dependency Analysis Using MATLAB
Compiler” on page 5-3.

2 Validates MEX-files. In particular, mexFunction entry points are verified.

For more details about MEX-file processing, see “MEX-Files, DLLs, or Shared Libraries” on page
5-5.

3 Creates a deployable archive from the input files and their dependencies.

For more details about deployable archives, see “Deployable Archive” on page 5-6.
4 Generates target-specific wrapper code.
5 Generates target-specific binary package.

For library targets such as C++ shared libraries, Java packages, or .NET assemblies, the
compiler invokes the required third-party compiler.

5 MATLAB Code Deployment

5-2

Dependency Analysis Using MATLAB Compiler

In this section...
“Function Dependency” on page 5-3
“Data File Dependency” on page 5-3
“Exclude Files From Package” on page 5-4

MATLAB Compiler uses a dependency analysis function to determine the list of necessary files to
include in the generated package. Sometimes, this process generates a large list of files, particularly
when MATLAB object classes exist in the compilation and the dependency analyzer cannot resolve
overloaded methods at package time. Dependency analysis also processes include/exclude files on
each pass.

Tip To improve package time performance and lessen application size, prune the path with the mcc
command’s -N and -p flags. You can also specify Files required for your application in the
compiler app or use the AdditionalFiles option in a compiler.build function.

Function Dependency
The dependency analyzer searches for executable content such as:

• MATLAB files
• P-files

Note If the MATLAB file corresponding to the p-file is not available, the dependency analysis
cannot determine the p-file’s dependencies.

• .fig files
• MEX-files

Data File Dependency
In addition to executable content listed above, MATLAB Compiler can detect and automatically
include files that your MATLAB functions access by calling any of these functions: audioinfo,
audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo, importdata, imread,
load, matfile, mmfileinfo, open, readtable, type, VideoReader, xlsfinfo, xlsread,
xmlread, and xslt.

To ensure that a specific file is included, specify the full path to the file as a character array in the
function.

fileread('D:\Work\MATLAB\Project\myfile.ext')

The compiler app automatically adds these data files to the Files required for your application to
run area.

 Dependency Analysis Using MATLAB Compiler

5-3

Exclude Files From Package
To ignore data files during dependency analysis, use one or more of the following options. For
examples on how to use these options together, see %#exclude.

• Use the %#exclude pragma in your MATLAB code to ignore a file or function during dependency
analysis.

• Use the -X flag in your mcc command to ignore all data files detected during dependency analysis.
• Use the AutoDetectDataFiles option in a compiler.build function to control whether data
files are automatically included in the package. Setting this to false/'off'/0 is equivalent to
using -X.

See Also
applicationCompiler | compiler.build.standaloneApplication | mcc

More About
• Application Compiler

5 MATLAB Code Deployment

5-4

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that the dependency analyzer can
find them. Doing so allows you to avoid many common compilation problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries to determine
their dependencies, explicitly include all executable files these files require. To do so, use either
the mcc -a option or the Files required for your application to run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB function called by a MEX-
file, DLL, or shared library, then manually include that function. To do so, use either the mcc -a
option or the Files required for your application to run field in the compiler app.

• Not all functions are compatible with the compiler. Check the file mccExcludedFiles.log after
your build completes. This file lists all functions called from your application that you cannot
deploy.

 MEX-Files, DLLs, or Shared Libraries

5-5

Deployable Archive
Each application or shared library you produce using the compiler has an embedded deployable
archive. The archive contains all the MATLAB based content (MATLAB files, MEX-files, and so on). All
MATLAB files in the deployable archive are encrypted using the Advanced Encryption Standard (AES)
cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain encrypted. For
more information on how to extract the deployable archive refer to the references in the following
table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to
MATLAB Compiler SDK C/C++ integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK .NET integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK Java integration “Deployable Archive Embedding and Extraction”
(MATLAB Compiler SDK)

MATLAB Compiler Excel integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding” on page 8-9

5 MATLAB Code Deployment

5-6

Additional Details
Multiple deployable archives, such as those generated with COM components, .NET assemblies, or
Excel add-ins, can coexist in the same user application. You cannot, however, mix and match the
MATLAB files they contain. You cannot combine encrypted and compressed MATLAB files from
multiple deployable archives into another deployable archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique cryptographic key.
MATLAB files with different keys, placed in the same deployable archive, do not execute. If you want
to generate another application with a different mix of MATLAB files, recompile these MATLAB files
into a new deployable archive.

The compiler deletes the deployable archive and generated binary following a failed compilation, but
only if these files did not exist before compilation initiates. Run help mcc -K for more information.

 Deployable Archive

5-7

Caution Release Engineers and Software Configuration Managers: Do not use build procedures
or processes that strip shared libraries on deployable archives. If you do, you can possibly strip the
deployable archive from the binary, resulting in run-time errors for the driver application.

5 MATLAB Code Deployment

5-8

Write Deployable MATLAB Code
In this section...
“Packaged Applications Do Not Process MATLAB Files at Run Time” on page 5-9
“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files” on page 5-
10
“Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-10
“Gradually Refactor Applications That Depend on Noncompilable Functions” on page 5-10
“Do Not Create or Use Nonconstant Static State Variables” on page 5-10
“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 5-11

Packaged Applications Do Not Process MATLAB Files at Run Time
The compiler secures your code against unauthorized changes. Deployable MATLAB files are
suspended or frozen at the time of compilation. This does not mean that you cannot deploy a flexible
application—it means that you must design your application with flexibility in mind. If you want the
end user to be able to choose between two different methods, for example, both methods must be
available in the deployable archive.

MATLAB Runtime only works on MATLAB code that was encrypted when the deployable archive was
built. Any function or process that dynamically generates new MATLAB code will not work against
MATLAB Runtime.

Some MATLAB toolboxes, such as the Deep Learning Toolbox™ product, generate MATLAB code
dynamically. Because MATLAB Runtime only executes encrypted MATLAB files, and the Deep
Learning Toolbox generates unencrypted MATLAB files, some functions in the Deep Learning Toolbox
cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function file cannot be deployed.
HELP, for example, is dynamic and not available in deployed mode. You can use LOADLIBRARY in
deployed mode if you provide it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and attempting to deploy it,
perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.
2 Package the MATLAB code, including the generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

If you require the ability to create MATLAB code for dynamic run-time processing, your end users
must have an installed copy of MATLAB.

 Write Deployable MATLAB Code

5-9

Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files
In general, good programming practices advise against redirecting a program search path
dynamically within the code. Many developers are prone to this behavior since it mimics the actions
they usually perform on the command line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and cannot change.
Therefore, any attempt to change these paths (using the cd command or the addpath command)
fails.

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-
10 for details.

Use isdeployed Functions To Execute Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB code is deployable,
and which is not. Such specification minimizes your compilation errors and helps create more
efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your startup.m. Using ismcc
and isdeployed, you specify when and what is packaged and executed.
if ~(ismcc || isdeployed)
 addpath(mypath);
end

Gradually Refactor Applications That Depend on Noncompilable
Functions
Over time, refactor, streamline, and modularize MATLAB code containing non-compilable or non-
deployable functions that use isdeployed. Your eventual goal is “graceful degradation” of non-
deployable code. In other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes through a phase of
perpetual rewriting, debugging, and optimization. In some toolboxes, such as the Deep Learning
Toolbox product, the code goes through a period of self-training as it reacts to various data
permutations and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a finished state and is
ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for code that calls
undeployable code.

Do Not Create or Use Nonconstant Static State Variables
Avoid using the following:

5 MATLAB Code Deployment

5-10

• Global variables in MATLAB code
• Static variables in MEX-files
• Static variables in Java code

The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because the MATLAB
Runtime process runs in a single thread. You cannot load more than one of these non-constant, static
variables into the same process. In addition, these static variables do not work well in multithreaded
applications.

When programming against packaged MATLAB code, you should be aware that an instance of
MATLAB Runtime is created for each instance of a new class. If the same class is instantiated again
using a different variable name, it is attached to the MATLAB Runtime instance created by the
previous instance of the same class. In short, if an assembly contains n unique classes, there will be
maximum of n instances of MATLAB Runtime created, each corresponding to one or more instances
of one of the classes.

If you must use static variables, bind them to instances. For example, defining instance variables in a
Java class is preferable to defining the variable as static.

Get Proper Licenses for Toolbox Functionality You Want to Deploy
You must have a valid MathWorks® license for toolboxes you use to create deployable MATLAB code.

See Also
isdeployed | ismcc

More About
• MATLAB Compiler support for MATLAB and toolboxes

 Write Deployable MATLAB Code

5-11

https://www.mathworks.com/products/compiler/supported/compiler_support.html

Calling Shared Libraries in Deployed Applications
The loadlibrary function in MATLAB allows you to load shared library into MATLAB.

Loading libraries using header files is not supported in compiled applications. Therefore, to create an
application that uses the loadlibrary function with a header file, follow these steps:

1 Create a prototype MATLAB file. Suppose that you call loadlibrary with the following syntax.

loadlibrary(library, header)

Run the following command in MATLAB only once to create the prototype file:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

This creates mylibrarymfile.m in the current folder. If you are on Windows, another file
named library_thunk_pcwin64.dll is also created in the current folder.

2 Change the call to loadlibrary in your MATLAB to the following:

loadlibrary(library, @mylibrarymfile)
3 Compile and deploy the application.

• If you are integrating the library into a deployed application, specify the library’s .dll along
with library_thunk_pcwin64.dll, if created, using the -a option of mcc command. If you
are using Application Compiler or Library Compiler apps, add the .dll files to the Files
required for your application to run section of the app.

• If you are providing the library as an external file that is not integrated with the deployed
application, place the library .dll file in the same folder as the compiled application. If you
are on Windows, you must integrate library_thunk_pcwin64.dll into your compiled
application.

The benefit of this approach is that you can replace the library with an updated version
without recompiling the deployed application. Replacing the library with a different version
works only if the function signatures of the function in the library are not altered. This is
because mylibrarymfile.m and library_thunk_pcwin64.dll are tied to the function
signatures of the functions in the library.

Note You cannot use loadlibrary inside MATLAB to load a shared library built with MATLAB. For
more information on loadlibrary, see “Limitations to Shared Library Support”.

Note Operating systems have a loadlibrary function, which loads specified Windows operating
system module into the address space of the calling process.

See Also
loadlibrary

Related Examples
• “Call C Functions in Shared Libraries”

5 MATLAB Code Deployment

5-12

MATLAB Data Files in Compiled Applications
In this section...
“Explicitly Including MATLAB Data files Using the %#function Pragma” on page 5-13
“Load and Save Functions” on page 5-13

Explicitly Including MATLAB Data files Using the %#function Pragma
The compiler excludes MATLAB data files (MAT-files) from dependency analysis by default. See
“Dependency Analysis Using MATLAB Compiler” on page 5-3.

If you want the compiler to explicitly inspect data within a MAT file, you need to specify the
%#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Deep Learning Toolbox, you need to use the
%#function pragma within your code to include a dependency on the gmdistribution class, for
instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful to code LOAD and SAVE
functions to manipulate the data and store it for later processing.

• Use isdeployed to determine if your code is running in or out of the MATLAB workspace.
• Specify the data file by either using WHICH (to locate its full path name) define it relative to the

location of ctfroot.
• All MAT-files are unchanged after mcc runs. These files are not encrypted when written to the

deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 5-6.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside, and outside, of
MATLAB.

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

• user_data.mat
• userdata\extra_data.mat
• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.
2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
 '.\userdata\extra_data.mat' -a
 '..\externdata\extern_data.mat'

 MATLAB Data Files in Compiled Applications

5-13

ex_loadsave.m
function ex_loadsave
% This example shows how to work with the
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
% user_data.mat
% userdata\extra_data.mat
% ..\externdata\extern_data.mat
%
% Compile this example with the mcc command:
% mcc -m ex_loadsave.m -a 'user_data.mat' -a
% '.\userdata\extra_data.mat'
% -a '..\externdata\extern_data.mat'
% All the folders under the current main MATLAB file directory will
% be included as
% relative path to ctfroot; All other folders will have the
% folder
% structure included in the deployable archive file from root of the
% disk drive.
%
% If a data file is outside of the main MATLAB file path,
% the absolute path will be
% included in deployable archive and extracted under ctfroot. For example:
% Data file
% "c:\$matlabroot\examples\externdata\extern_data.mat"
% will be added into deployable archive and extracted to
% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
%
% All mat/data files are unchanged after mcc runs. There is
% no encryption on these user included data files. They are
% included in the deployable archive.
%
% The target data file is:
% .\output\saved_data.mat
% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

%==== load data file =============================
if isdeployed
 % In deployed mode, all file under CTFRoot in the path are loaded
 % by full path name or relative to $ctfroot.
 % LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));
 % LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
 LOADFILENAME1=which(fullfile('user_data.mat'));
 LOADFILENAME2=which(fullfile('extra_data.mat'));
 % For external data file, full path will be added into deployable archive;
 % you don't need specify the full path to find the file.
 LOADFILENAME3=which(fullfile('extern_data.mat'));
else
 %running the code in MATLAB
 LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','user_data.mat');
 LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','userdata','extra_data.mat');
 LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',
 'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

5 MATLAB Code Deployment

5-14

% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = data1*data2;
disp('A * B = ');
disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if (~isdir(SAVEPATH))
 mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');
disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result');

 MATLAB Data Files in Compiled Applications

5-15

Microsoft Excel Add-In Creation,
Function Execution, and Deployment

6

Supported Compilation Targets

Microsoft Excel Add-In
Using Excel add-in and the Deployment Tool (deploytool or mcc), you create deployable add-ins
and Excel functions from MATLAB code that runs in Microsoft Excel applications. The Deployment
Tool and mcc support the following function outputs:

• No outputs
• Figure (graphical) output
• Scalar output

Using the MATLAB Compiler Function Wizard, you create Excel macros that can be deployed as add-
ins or workbooks.

MATLAB Compiler supports multidimensional matrix output(s).

Migration Considerations for 32-bit and 64-bit Microsoft Excel

Add-ins created with MATLAB Compiler are compatible with both 32–bit and 64–bit versions of
Microsoft Excel. MATLAB Compiler itself is in 64–bit only.

What Are Excel Add-In Components and When Should You Create
Them?
MATLAB Compiler generates two primary artifacts from your MATLAB code, using the Deployment
Tool: a Microsoft Excel add-in and a COM component.

Existing MATLAB functions can be integrated into new or existing spreadsheet solutions, as add-ins,
with the Function Wizard on page 4-2. You can also use the Function Wizard to create and test add-
ins on page 4-17 for new MATLAB functions.

COM components created with either the Deployment Tool or the Function Wizard (.bas files) can be
integrated into existing Microsoft Visual Basic applications.

MATLAB Compiler Components are ideal solutions for deploying MATLAB code to users of Microsoft
Excel and large-scale enterprise financial applications written in Microsoft Visual Basic.

MATLAB Compiler Limitations
MATLAB objects are not supported as inputs or outputs for compiled or deployed functions with
MATLAB Compiler for Excel add-ins.

6 Microsoft Excel Add-In Creation, Function Execution, and Deployment

6-2

The Library Compiler and the Command Line Interface
In this section...
“Using Graphical Interface” on page 6-3
“Using Command Line Interface” on page 6-3

Using Graphical Interface
For a complete example of how to create an Excel add-in using the Library Compiler app, see “Create
Excel Add-In from MATLAB” on page 2-7.

Using Command Line Interface
As an alternative to using the Library Compiler, you can use the command line to create your
deployable executable. Use compiler.build.excelAddIn or the mcc function.

 The Library Compiler and the Command Line Interface

6-3

Create Macros from MATLAB Functions
In this section...
“Create Add-Ins and Macros with Single and Multiple Outputs” on page 6-4
“Work with Variable-Length Inputs and Outputs” on page 6-4

Create Add-Ins and Macros with Single and Multiple Outputs
The basic workflow for Microsoft Excel add-in and macro creation can be found in “Create Excel Add-
In from MATLAB” on page 2-7 and “Integrate an Add-In and COM Component with Microsoft Excel”
on page 2-11.

Work with Variable-Length Inputs and Outputs
This example shows you how to work with, and create macros from, functions having variable-length
inputs and outputs

Overview

myplot takes a single integer input and plots a line from 1 to that number.

mysum takes an input of varargin of type integer, adds all the numbers, and returns the result.

myprimes takes a single integer input n and returns all the prime numbers less than or equal to n.

The Microsoft Excel file, xlmulti.xls, demonstrates these functions in several ways.

Where Is the Example Code?

For more information about accessing the example code from within the product ,see “Example File
Copying” on page 4-19.

Create the Project

Use the following information as you work through this example using the instructions in “Create
Excel Add-In from MATLAB” on page 2-7:

Project Name xlmulti
Class Name xlmulticlass
File to compile
(in the xlmulti folder of myfiles\work)

myplot.m
myprimes.m
mysum.m

Add COM Function to Microsoft Excel Add-In

1 Start Microsoft Excel on your system.
2 Open the file myfiles\work\xlmulti\xlmulti.xls.

The example appears as shown:

6 Microsoft Excel Add-In Creation, Function Execution, and Deployment

6-4

Note If an Excel prompt says that this file contains macros, click Enable Macros to run this
example.

Call myplot

This illustration calls the function myplot with a value of 4. To execute the function, make A7
(=myplot(4)) the active cell. Press F2 and then Enter.

 Create Macros from MATLAB Functions

6-5

This procedure plots a line from 1 through 4 in a MATLAB Figure window. This graphic can be
manipulated similarly to the way one would manipulate a figure in MATLAB. Some functionality, such
as the ability to change line style or color, is not available.

The calling cell contains 0 because the function does not return a value.

Call mysum Four Different Ways

This illustration calls the function mysum in four different ways:

• The first (cell A14) takes the values 1 through 10, adds them, and returns the result of 55
(=mysum(1,2,3,4,5,6,7,8,9,10)).

• The second (cell A19) takes a range object that is a range of cells with the values 1 through 10,
adds them, and returns the result of 55 (=mysum(B19:K19)).

• The third (cell A24) takes several range objects, adds them, and returns the result of 120
(=mysum(B24:K24,B25:L25,B26:D26)). This illustration demonstrates that the ranges do not
need to be the same size and that all the cells do not need a value.

• The fourth (cell A30) takes a combination of a range object and explicitly stated values, adds
them, and returns the result of 16 (=mysum(10,B30:D30)).

This illustration runs when the Excel file is opened. To reactivate the illustration, activate the
appropriate cell. Then press F2 followed by Enter.

myprimes Macro

In this illustration, the macro myprimes calls the function myprimes.m with an initial value of 10 in
cell A42. The function returns all the prime numbers less than 10 to cells B42 through E42.

6 Microsoft Excel Add-In Creation, Function Execution, and Deployment

6-6

To execute the macro, from the main Excel window (not the Visual Basic Editor), open the Macro
dialog box, by pressing the Alt and F8 keys simultaneously, or by selecting Tools > Macro >
Macros.

Select myprimes from the list and click Run.

This function automatically resizes if the returned output is larger than the output range specified.
Change the value in cell A42 to a number larger than 10. Then rerun the macro. The output returns
all prime numbers less than the number you entered in cell A42.

Inspect the Microsoft Visual Basic Code (Optional)

1 On the Microsoft Excel main window, select Tools > Macro > Visual Basic Editor.
2 On the Microsoft Visual Basic, in the Project - VBAProject window, double-click to expand

VBAProject (xlmulti.xls)
3 Expand the Modules folder and double-click the Module1 module. This opens the VB Code

window with the code for this project.

For More Information

For more information about working with variable-length arguments, see “Program with Variable
Arguments” on page 7-7.

 Create Macros from MATLAB Functions

6-7

Execute Add-In and Graphical Function
In this section...
“Execute an Add-In to Validate Nongraphical Function Output” on page 6-8
“Execute a Graphical Function” on page 6-8
“Create Dialog Box and Error Message Macros” on page 6-11

Execute an Add-In to Validate Nongraphical Function Output
If you have built your add-in and COM component using deploytool or mcc and are ready to begin
validating your non-graphical function's output, see “Execute Functions and Create Macros” on page
4-2.

Functions Having Multiple Outputs

When working with functions having multiple outputs, simply define each specific output range with
the Argument Properties For y dialog box.

Execute a Graphical Function
Execute a graphical function on a Microsoft Excel spreadsheet by doing the following.

1 Install and start the Function Wizard using the procedures detailed in “Installation of the
Function Wizard” on page 4-20 and “Function Wizard Start-Up” on page 4-21. Successfully
completing each of these procedures causes the Function Wizard Control Panel to display.

6 Microsoft Excel Add-In Creation, Function Execution, and Deployment

6-8

2 Click Add.
3 Select a function with a graphical output, such as mysurf for example, from the Functions for

Class class_name box.
4 Click Add. The Function Properties dialog box appears.
5 Click Done. The Function Wizard Control Panel appears with mysurf selected in the list of

Active Functions.

Note Since mysurf.m does not have any inputs or outputs, there is no need to specify
Properties.

6 In the Execute Functions area of the Function Wizard Control Panel, click Execute. The
graphical output for mysurf appears in a separate window.

 Execute Add-In and Graphical Function

6-9

7 Test to ensure you can interact with the figure and that it is usable.

For example, try dragging the figure window, inserting color bars and legends in the toolbar, and
so on.

If you encounter problems working with the figure, consult the person who created it.

Create a Macro Using a Graphical Function

Once you are satisfied your graphical figure is usable, do the following to create a macro to execute it
at your convenience.

Caution To create a macro, you must have already built your COM component and add-in with
MATLAB Compiler.

For complete Function Wizard workflows, see “Execute Functions and Create Macros” on page 4-2
and “End-to-End Deployment of MATLAB Function” on page 4-17.

1 In the Function Wizard Control Panel, label the macro by entering mysurf in the Macro Name
field of the Create Macros area.

2 If desired, change the default value Book1 (for the default Excel sheet name) in the Store
Macro In field.

3 Click Create Macro.
4 See “Macro Execution” on page 4-14 for details on executing macros with different versions of

Microsoft Office. When the macro is Run, you should see output similar to the surf peaks image
above.

6 Microsoft Excel Add-In Creation, Function Execution, and Deployment

6-10

Create Dialog Box and Error Message Macros
Create a macro that displays a dialog box using this workflow, which is useful for error message
presentation.

1 Install and start the Function Wizard using the procedures detailed in “Installation of the
Function Wizard” on page 4-20 and “Function Wizard Start-Up” on page 4-21. Successfully
completing each of these procedures causes the Function Wizard Control Panel to display.

2 Click Add. The MATLAB Components dialog box appears.

 Execute Add-In and Graphical Function

6-11

3 Select a function that displays a graphical error message, such as myerror for example, from the
Functions for Class class_name box.

4 Click Add. The Function Properties dialog box appears.
5 Associate an input value of -1 with myerror.

a On the Inputs tab, click Properties. The Argument Properties for in dialog box appears.
b Select Value and enter -1.
c Click Done.

6 Define the output of myerror—any Excel spreadsheet cell, in this case.

a On the Outputs tab, click Properties. The Argument Properties For x dialog box appears,
where x is the name of the output variable you are defining properties of.

b Select Range and enter and spreadsheet cell value, =C13, for example.
c Click Done. The Function Wizard Control Panel appears with myerror selected in the list of

Active Functions.

Tip If you have functions besides myerror listed in the Active Functions list that you don't
want to execute when you test myerror, deactivate these functions by selecting them and
clicking Deactivate.

7 Click Execute. The following will display.

6 Microsoft Excel Add-In Creation, Function Execution, and Deployment

6-12

Create a Macro That Displays an Error Message or Dialog Box

Create a macro to display your error message on demand.

1 In the Function Wizard Control Panel, label the macro by entering myerror in the Macro Name
field of the Create Macros area.

2 If desired, change the default value Book1 (for the default Excel sheet name) in the Store
Macro In field.

3 Click Create Macro.
4 See “Macro Execution” on page 4-14 for details on executing macros with different versions of

Microsoft Office.

 Execute Add-In and Graphical Function

6-13

Microsoft Excel Add-In Integration

• “Overview of the Integration Process” on page 7-2
• “Integrate Components Using Visual Basic Application” on page 7-3
• “Build and Integrate Spectral Analysis Functions” on page 7-13
• “For More Information” on page 7-23

7

Overview of the Integration Process
Each MATLAB Compiler component is built as a COM object that you can access from Microsoft Excel
through Microsoft Visual Basic for Applications (VBA). This topic provides general information on
how to integrate the MATLAB Compiler components into Excel using VBA programming environment.

It assumes you have the skill set of a Microsoft Excel and have a working knowledge of VBA.

This section is not intended to teach you to program in Visual Basic. Refer to the VBA documentation
provided with Excel for general programming information.

For a comprehensive example of building and integrating a COM component using Visual Basic
programming, see “Build and Integrate Spectral Analysis Functions” on page 7-13.

7 Microsoft Excel Add-In Integration

7-2

Integrate Components Using Visual Basic Application
In this section...
“When to Use a Formula Function or a Subroutine” on page 7-3
“Initialize MATLAB Compiler Libraries with Microsoft Excel” on page 7-3
“Create an Instance of a Class” on page 7-4
“Call the Methods of a Class Instance” on page 7-6
“Program with Variable Arguments” on page 7-7
“Modify Flags” on page 7-8
“Handle Errors During a Method Call” on page 7-11

When to Use a Formula Function or a Subroutine
VBA provides two basic procedure types: functions and subroutines.

You access a VBA function directly from a cell in a worksheet as a formula function. Use function
procedures when the original MATLAB function takes one or more inputs and returns zero outputs.

You access a subroutine as a general macro. Use a subroutine procedure when the original MATLAB
function returns an array of values or multiple outputs because you need to map these outputs into
multiple cells/ranges in the worksheet.

When you create a component, MATLAB Compiler produces a VBA module (.bas file). This file
contains simple call wrappers, each implemented as a function procedure for each method of the
class.

Initialize MATLAB Compiler Libraries with Microsoft Excel
Before you use any MATLAB Compiler component, initialize the supporting libraries with the current
instance of Microsoft Excel. Do this once for an Excel session that uses the MATLAB Compiler
components.

To do this initialization, call the utility library function MWInitApplication, which is a member of
the MWUtil class. This class is part of the MWComUtil library. See “Class MWUtil” on page 10-3 .

One way to add this initialization code into a VBA module is to provide a subroutine that does the
initialization once, and simply exits for all subsequent calls. The following Microsoft Visual Basic code
sample initializes the libraries with the current instance of Excel. A global variable of type Object
named MCLUtil holds an instance of the MWUtil class, and another global variable of type Boolean
named bModuleInitialized stores the status of the initialization process. The private subroutine
InitModule() creates an instance of the MWComUtil class and calls the MWInitApplication
method with an argument of Application. Once this function succeeds, all subsequent calls exit
without reinitializing.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
 If Not bModuleInitialized Then
 On Error GoTo Handle_Error

 Integrate Components Using Visual Basic Application

7-3

 If MCLUtil Is Nothing Then
 Set MCLUtil = CreateObject("MWComUtil.MWUtil")
 End If
 Call MCLUtil.MWInitApplication(Application)
 bModuleInitialized = True
 Exit Sub
Handle_Error:
 bModuleInitialized = False
 End If
End Sub

This code is similar to the default initialization code generated in the VBA module created when the
component is built. Each function that uses MATLAB Compiler components can include a call to
InitModule at the beginning to ensure that the initialization always gets performed as needed.

Create an Instance of a Class
• “Overview” on page 7-4
• “CreateObject Function” on page 7-4
• “New Operator” on page 7-4
• “How the MATLAB Runtime Is Shared Among Classes” on page 7-5

Overview

Before calling a class method (compiled MATLAB function), you must create an instance of the class
that contains the method. VBA provides two techniques for doing this:

• CreateObject on page 7-4 function
• New on page 7-4 operator

CreateObject Function

This method uses the Microsoft Visual Basic application programming interface (API) CreateObject
function to create an instance of the class. Microsoft refers to calling CreateObject as late binding
and using new as early binding.

To use this method, declare a variable of type Object using Dim to hold a reference to the class
instance and call CreateObject using the class programmatic identifier (ProgID) as an argument,
as shown in the next example:

Function foo(x1 As Variant, x2 As Variant) As Variant
 Dim aClass As Object

 On Error Goto Handle_Error
 Set aClass = CreateObject("mycomponent.myclass.1_0")
 ' (call some methods on aClass)
 Exit Function
Handle_Error:
 foo = Err.Description
End Function

New Operator

This method uses the Visual Basic New operator on a variable explicitly dimensioned as the class to be
created. Before using this method, you must reference the type library containing the class in the

7 Microsoft Excel Add-In Integration

7-4

current VBA project. Do this by selecting the Tools menu from the Visual Basic Editor, and then
selecting References to display the Available References list. From this list, select the necessary
type library.

The following example illustrates using the New operator to create a class instance. It assumes that
you have selected mycomponent 1.0 Type Library from the Available References list before
calling this function.

Function foo(x1 As Variant, x2 As Variant) As Variant
 Dim aClass As mycomponent.myclass

 On Error Goto Handle_Error
 Set aClass = New mycomponent.myclass
 ' (call some methods on aClass)
 Exit Function
Handle_Error:
 foo = Err.Description
End Function

In this example, the class instance can be dimensioned as simply myclass. The full declaration in the
form <component-name>.<class-name> guards against name collisions that can occur if other
libraries in the current project contain types named myclass.

Using both CreateObject and New produce a dimensioned class instance. The first method does not
require a reference to the type library in the VBA project; the second results in faster code execution.
The second method has the added advantage of enabling the Auto-List-Members and Auto-Quick-
Info capabilities of the Microsoft Visual Basic editor to work with your classes. The default function
wrappers created with each built component all use the first method for object creation.

In the previous two examples, the class instance used to make the method call was a local variable of
the procedure. This creates and destroys a new class instance for each call. An alternative approach
is to declare one single module-scoped class instance that is reused by all function calls, as in the
initialization code of the previous example.

The following example illustrates this technique with the second method:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
 On Error Goto Handle_Error
 If aClass Is Nothing Then
 Set aClass = New mycomponent.myclass
 End If
 ' (call some methods on aClass)
 Exit Function
Handle_Error:
 foo = Err.Description
End Function

How the MATLAB Runtime Is Shared Among Classes

MATLAB Compiler creates a single MATLAB Runtime instance when the first Microsoft COM class is
instantiated in an application. This MATLAB Runtime is reused and shared among all subsequent
class instances within the component, resulting in more efficient memory usage and eliminating the
MATLAB Runtime startup cost in each subsequent class instantiation.

 Integrate Components Using Visual Basic Application

7-5

All class instances share a single MATLAB workspace and share global variables in the MATLAB files
used to build the component. This makes properties of a COM class behave as static properties
instead of instance-wise properties.

Call the Methods of a Class Instance
After you have created a class instance, you can call the class methods to access the compiled
MATLAB functions. MATLAB Compiler applies a standard mapping from the original MATLAB
function syntax to the method's argument list. See “Reference Utility Classes” on page 10-2 for a
detailed description of the mapping from MATLAB functions to COM class method calls.

When a method has output arguments, the first argument is always nargout, which is of type Long.
This input parameter passes the normal MATLAB nargout parameter to the compiled function and
specifies how many outputs are requested. Methods that do not have output arguments do not pass a
nargout argument. Following nargout are the output parameters listed in the same order as they
appear on the left side of the original MATLAB function. Next come the input parameters listed in the
same order as they appear on the right side of the original MATLAB function. All input and output
arguments are typed as Variant, the default Visual Basic data type.

The Variant type can hold any of the basic VBA types, arrays of any type, and object references. See
“Data Conversion Rules” on page A-2 for a detailed description of how to convert Variant types of
any basic type to and from MATLAB data types. In general, you can supply any Visual Basic type as an
argument to a class method, with the exception of Visual Basic UDTs. You can also pass Microsoft
Excel Range objects directly as input and output arguments.

When you pass a simple Variant type as an output parameter, the called method allocates the
received data and frees the original contents of the Variant. In this case it is sufficient to dimension
each output argument as a single Variant. When an object type (like an Excel Range) is passed as
an output parameter, the object reference is passed in both directions, and the object's Value
property receives the data.

The following examples illustrate the process of passing input and output parameters from VBA to the
MATLAB Compiler component class methods.

The first example is a formula function that takes two inputs and returns one output. This function
dispatches the call to a class method that corresponds to a MATLAB function of the form function
y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant
 Dim aClass As Object
 Dim y As Variant

 On Error Goto Handle_Error
 Set aClass = New mycomponent.myclass
 aClass = CreateObject("mycomponent.myclass.1_0")
 Call aClass.foo(1,y,x1,x2)
 foo = y
 Exit Function
Handle_Error:
 foo = Err.Description
End Function

The second example rewrites the same function as a subroutine and uses Excel ranges for input and
output.

7 Microsoft Excel Add-In Integration

7-6

Sub foo(Rout As Range, Rin1 As Range, Rin2 As Range)
 Dim aClass As Object

 On Error Goto Handle_Error
 aClass = CreateObject("mycomponent.myclass.1_0")
 Call aClass.foo(1,Rout,Rin1,Rin2)
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

Program with Variable Arguments
Process varargin and varargout Arguments

When varargin and/or varargout are present in the MATLAB function that you are using for the
Excel component, these parameters are added to the argument list of the class method as the last
input/output parameters in the list. You can pass multiple arguments as a varargin array by
creating a Variant array, assigning each element of the array to the respective input argument.

The following example creates a varargin array to call a method resulting from a MATLAB function
of the form y = foo(varargin):

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
 x4 As Variant, x5 As Variant) As Variant
 Dim aClass As Object
 Dim v As Variant
 Dim y As Variant
 Dim MCLUtil As Object

 On Error GoTo Handle_Error
 set aClass = CreateObject("mycomponent.myclass.1_0")
 Set MCLUtil = CreateObject("MWComUtil.MWUtil")
 Call MCLUtil.MWPack(v, x1, x2, x3, x4, x5)
 Call aClass.foo(1, y, v)
 foo = y
 Exit Function
Handle_Error:
 foo = Err.Description
End Function

The MWUtil class included in the MWComUtil utility library provides the MWPack helper function to
create varargin parameters. See “Class MWUtil” on page 10-3 for more details.

The next example processes a varargout parameter into three separate Excel Ranges. This function
uses the MWUnpack function in the utility library. The MATLAB function used is
varargout = foo(x1,x2).

Sub foo(Rout1 As Range, Rout2 As Range, Rout3 As Range, _
 Rin1 As Range, Rin2 As Range)
 Dim aClass As Object
 Dim aUtil As Object
 Dim v As Variant

 On Error Goto Handle_Error
 aUtil = CreateObject("MWComUtil.MWUtil")

 Integrate Components Using Visual Basic Application

7-7

 aClass = CreateObject("mycomponent.myclass.1_0")
 Call aClass.foo(3,v,Rin1,Rin2)
 Call aUtil.MWUnpack(v,0,True,Rout1,Rout2,Rout3)
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

Pass an Empty varargin from Microsoft Visual Basic Code

In MATLAB, varargin inputs to functions are optional, and may be present or omitted from the
function call. However, from Microsoft Visual Basic, function signatures are more strict—if varargin
is present among the MATLAB function inputs, the VBA call must include varargin, even if you want
it to be empty. To pass in an empty varargin, pass the Null variant, which is converted to an empty
MATLAB cell array when passed.

Pass an Empty varargin from VBA Code

The following example illustrates how to pass the null variant in order to pass an empty varargin:

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
 x4 As Variant, x5 As Variant) As Variant
 Dim aClass As Object
 Dim v(1 To 5) As Variant
 Dim y As Variant

 On Error Goto Handle_Error
 v(1) = x1
 v(2) = x2
 v(3) = x3
 v(4) = x4
 v(5) = x5
 aClass = CreateObject("mycomponent.myclass.1_0")

 'Call aClass.foo(1,y,v)
 Call aClass.foo(1,y,Null)

 foo = y
 Exit Function
Handle_Error:
 foo = Err.Description
End Function

For More Information

For more information about working with variable-length arguments, see “Work with Variable-Length
Inputs and Outputs” on page 6-4.

Modify Flags
• “Overview” on page 7-9
• “Array Formatting Flags” on page 7-9
• “Data Conversion Flags” on page 7-11

7 Microsoft Excel Add-In Integration

7-8

Overview

Each MATLAB Compiler component exposes a single read/write property named MWFlags of type
MWFlags. The MWFlags property consists of two sets of constants: array formatting flags on page 7-
9and data conversion flags on page 7-11. Array formatting flags affect the transformation of
arrays, whereas data conversion flags deal with type conversions of individual array elements.

The data conversion flags change selected behaviors of the data conversion process from Variants
to MATLAB types and vice versa. By default, the MATLAB Compiler components allow setting data
conversion flags at the class level through the MWFlags class property. This holds true for all Visual
Basic types, with the exception of the MATLAB Compiler MWStruct, MWField, MWComplex,
MWSparse, and MWArg types. Each of these types exposes its own MWFlags property and ignores the
properties of the class whose method is being called. The MWArg class is supplied specifically for the
case when a particular argument needs different settings from the default class properties.

This section provides a general discussion of how to set these flags and what they do. See “Class
MWFlags” (MATLAB Compiler SDK) for a detailed discussion of the MWFlags type, as well as
additional code samples.

Array Formatting Flags

Array formatting flags guide the data conversion to produce either a MATLAB cell array or matrix
from general Variant data on input or to produce an array of Variants or a single Variant
containing an array of a basic type on output.

The following examples assume that you have referenced the MWComUtil library in the current
project by selecting Tools > References and selecting MWComUtil 7.5 Type Library from the list:

Sub foo()
 Dim aClass As mycomponent.myclass
 Dim var1(1 To 2, 1 To 2), var2 As Variant
 Dim x(1 To 2, 1 To 2) As Double
 Dim y1,y2 As Variant

 On Error Goto Handle_Error
 var1(1,1) = 11#
 var1(1,2) = 12#
 var1(2,1) = 21#
 var1(2,2) = 22#
 x(1,1) = 11
 x(1,2) = 12
 x(2,1) = 21
 x(2,2) = 22
 var2 = x
 Set aClass = New mycomponent.myclass
 Call aClass.foo(1,y1,var1)
 Call aClass.foo(1,y2,var2)
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

In addition, these examples assume you have referenced the COM object created with MATLAB
Compiler (mycomponent) as mentioned in “New Operator” on page 7-4.

 Integrate Components Using Visual Basic Application

7-9

Here, two Variant variables, var1 and var2 are constructed with the same numerical data, but
internally they are structured differently: var1 is a 2-by-2 array of Variants with each element
containing a 1-by-1 Double, while var2 is a 1-by-1 Variant containing a 2-by-2 array of Doubles.

In MATLAB Compiler, when using the default settings, both of these arrays will be converted to 2-
by-2 arrays of doubles. This does not follow the general convention listed in COM VARIANT to the
MATLAB Conversion Rules. According to these rules, var1 converts to a 2-by-2 cell array with each
cell occupied by a 1-by-1 double, and var2 converts directly to a 2-by-2 double matrix.

The two arrays both convert to double matrices because the default value for the
InputArrayFormat flag is mwArrayFormatMatrix. The InputArrayFormat flag controls how
arrays of these two types are handled. This default is used because array data originating from Excel
ranges is always in the form of an array of Variants (like var1 of the previous example), and
MATLAB functions most often deal with matrix arguments.

But what if you want a cell array? In this case, you set the InputArrayFormat flag to
mwArrayFormatCell. Do this by adding the following line after creating the class and before the
method call:

aClass.MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting this flag presents all array input to the compiled MATLAB function as cell arrays.

Similarly, you can manipulate the format of output arguments using the OutputArrayFormat flag.
You can also modify array output with the AutoResizeOutput and TransposeOutput flags.

AutoResizeOutput is used for Excel Range objects passed directly as output parameters. When this
flag is set, the target range automatically resizes to fit the resulting array. If this flag is not set, the
target range must be at least as large as the output array or the data is truncated.

The TransposeOutput flag transposes all array output. This flag is useful when dealing with
MATLAB functions that output one-dimensional arrays. By default, MATLAB realizes one-dimensional
arrays as 1-by-n matrices (row vectors) that become rows in an Excel worksheet.

Tip If your MATLAB function is specifically returning a row vector, for example, ensure you assign a
similar row vector of cells in Excel.

You may prefer worksheet columns from row vector output. This example auto-resizes and transposes
an output range:

Sub foo(Rout As Range, Rin As Range)
 Dim aClass As mycomponent.myclass

 On Error Goto Handle_Error
 Set aClass = New mycomponent.myclass
 aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
 aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
 Call aClass.foo(1,Rout,Rin)
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

7 Microsoft Excel Add-In Integration

7-10

Data Conversion Flags

Data conversion flags deal with type conversions of individual array elements. The two data
conversion flags, CoerceNumericToType and InputDateFormat, govern how numeric and date
types are converted from VBA to MATLAB. Consider the example:

Sub foo()
 Dim aClass As mycomponent.myclass
 Dim var1, var2 As Variant
 Dim y As Variant

 On Error Goto Handle_Error
 var1 = 1
 var2 = 2#
 Set aClass = New mycomponent.myclass
 Call aClass.foo(1,y,var1,var2)
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

This example converts var1 of type Variant/Integer to an int16 and var2 of type Variant/
Double to a double.

If the original MATLAB function expects doubles for both arguments, this code might cause an error.
One solution is to assign a double to var1, but this may not be possible or desirable. In such a case
set the CoerceNumericToType flag to mwTypeDouble, causing the data converter to convert all
numeric input to double. In the previous example, place the following line after creating the class
and before calling the methods:

aClass.MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

The InputDateFormat flag controls how the VBA Date type is converted. This example sends the
current date and time as an input argument and converts it to a string:

Sub foo()
 Dim aClass As mycomponent.myclass
 Dim today As Date
 Dim y As Variant

 On Error Goto Handle_Error
 today = Now
 Set aClass = New mycomponent.myclass
 aClass. MWFlags.DataConversionFlags.InputDateFormat =
mwDateFormatString
 Call aClass.foo(1,y,today)
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

Handle Errors During a Method Call
Errors that occur while creating a class instance or during a class method create an exception in the
current procedure. Microsoft Visual Basic provides an exception handling capability through the On

 Integrate Components Using Visual Basic Application

7-11

Error Goto <label> statement, in which the program execution jumps to <label> when an error
occurs. (<label> must be located in the same procedure as the On Error Goto statement). All
errors are handled this way, including errors within the original MATLAB code. An exception creates
a Visual Basic ErrObject object in the current context in a variable called Err. (See the Visual Basic
for Applications documentation for a detailed discussion on VBA error handling.) All of the examples
in this section illustrate the typical error trapping logic used in function call wrappers for MATLAB
Compiler components.

7 Microsoft Excel Add-In Integration

7-12

Build and Integrate Spectral Analysis Functions
In this section...
“Overview” on page 7-13
“Building the Component” on page 7-13
“Integrate the Component Using VBA” on page 7-14
“Test the Add-In” on page 7-20
“Package and Distribute the Add-In” on page 7-21
“Install the Add-In” on page 7-22

Overview
This example illustrates the creation of a comprehensive Excel add-in to perform spectral analysis. It
requires knowledge of Visual Basic forms and controls, and Excel workbook events. See the VBA
documentation for a complete discussion of these topics.

You create an Excel add-in that performs a fast Fourier transform (FFT) on an input data set located
in a designated worksheet range. The function returns the FFT results, an array of frequency points,
and the power spectral density of the input data. It places these results into ranges you indicate in
the current worksheet. You can also optionally plot the power spectral density.

You develop the function so that you can invoke it from the Excel Tools menu and can select input
and output ranges through a UI.

To create the add-in:

1 Build a standalone COM component from the MATLAB code.
2 Implement the necessary VBA code to collect input and dispatch the calls to your component.
3 Create the UI.
4 Create an Excel add-in, and package all necessary components for application deployment.

Building the Component
Your component has one class with two methods:

• computefft — Compute the FFT and power spectral density of the input data, and compute a
vector of frequency points based on the length of the data entered and the sampling interval.

• plotfft — Perform the same operations as computefft, but also plot the input data and the
power spectral density in a MATLAB Figure window.

Note The MATLAB code for these two functions is in two MATLAB files, computefft.m and
plotfft.m.

The code for computefft.m:

function [fftdata, freq, powerspect] =
 computefft(data, interval)

 Build and Integrate Spectral Analysis Functions

7-13

 if (isempty(data))
 fftdata = [];
 freq = [];
 powerspect = [];
 return;
 end
 if (interval <= 0)
 error('Sampling interval must be greater than zero');
 return;
 end
 fftdata = fft(data);
 freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
 powerspect = abs(fftdata)/(sqrt(length(fftdata)));

The code for plotfft.m.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
 [fftdata, freq, powerspect] = computefft(data, interval);
 len = length(fftdata);
 if (len <= 0)
 return;
 end
 t = 0:interval:(len-1)*interval;
 subplot(2,1,1), plot(t, data)
 xlabel('Time'), grid on
 title('Time domain signal')
 subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))
 xlabel('Frequency (Hz)'), grid on
 title('Power spectral density')

Build the COM component using the Library Compiler app and these settings:

Setting Value
Component name Fourier
Class name Fourier
Project folder Name of your work folder, followed by the component name
Show verbose output Selected

For more information, see the instructions in “Create Excel Add-In from MATLAB” on page 2-7.

Where Is the Example Code?

For more information about accessing the example code from within the product ,see “Example File
Copying” on page 4-19.

Integrate the Component Using VBA
Having built your component, you can implement the necessary VBA code to integrate it into Excel.

Note To use Fourier.xla directly in the folder xlspectral, (see “Example File Copying” on page
4-19) add references to Fourier 1.0 Type Library and MWComUtil 7.X Type Library.

7 Microsoft Excel Add-In Integration

7-14

Select the Libraries

To open Excel and select the libraries, you should develop the add-in:

1 Start Excel on your system.
2 From the Excel main menu, select Tools > Macro > Visual Basic Editor.
3 In the Visual Basic Editor, select Tools > References to open the Project References dialog box.
4 Select Fourier 1.0 Type Library and MWComUtil 7.x Type Library.

Create the Main VB Code Module for the Application

The add-in requires initialization code and global variables to hold the application state between
function invocations. To achieve this, implement a Visual Basic code module to manage these tasks:

1 Right-click the VBAProject item in the project window and select Insert > Module.

A new module appears under Modules in the VBA Project.
2 In the module property page, set the Name property to FourierMain.
3 Enter the following code in the FourierMain module:

'
' FourierMain - Main module stores global state of controls
' and provides initialization code
'
Public theFourier As Fourier.Fourier 'Global instance of Fourier object
Public theFFTData As MWComplex 'Global instance of MWComplex to accept FFT
Public InputData As Range 'Input data range
Public Interval As Double 'Sampling interval
Public Frequency As Range 'Output frequency data range
Public PowerSpect As Range 'Output power spectral density range
Public bPlot As Boolean 'Holds the state of plot flag
Public theUtil As MWUtil 'Global instance of MWUtil object
Public bInitialized As Boolean 'Module-is-initialized flag

Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form
 Dim MainForm As frmFourier
 On Error GoTo Handle_Error
 Call InitApp
 Set MainForm = New frmFourier
 Call MainForm.Show
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel
 If bInitialized Then Exit Sub
 On Error GoTo Handle_Error
 If theUtil Is Nothing Then
 Set theUtil = New MWUtil
 Call theUtil.MWInitApplication(Application)
 End If
 If theFourier Is Nothing Then
 Set theFourier = New Fourier.Fourierclass
 End If
 If theFFTData Is Nothing Then
 Set theFFTData = New MWComplex
 End If
 bInitialized = True
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

 Build and Integrate Spectral Analysis Functions

7-15

Create the Visual Basic Form

Develop a user interface for your add-in using the Visual Basic Editor. To create a new user form and
populate it with the necessary controls:

1 Right-click VBAProject in the VBA project window, and select Insert > UserForm.

A new form appears under Forms in the VBA project window.
2 In the form property page, set the Name property to frmFourier and the Caption property to

Spectral Analysis.
3 Add a series of controls to the blank form:

7 Microsoft Excel Add-In Integration

7-16

Controls for Spectral Analysis

Control Type Control Name Properties Purpose
CheckBox chkPlot Caption = Plot

time domain
signal and power
spectral density

Plot input data and
power spectral
density.

CommandButton btnOK Caption = OK

Default = True

Execute the function
and dismiss the dialog
box.

CommandButton btnCancel Caption = Cancel

Cancel = True

Dismisse the dialog
box without executing
the function.

Frame Frame1 Caption = Input
Data

Group all input
controls.

Frame Frame2 Caption = Output
Data

Group all output
controls.

Label Label1 Caption = Input
Data:

Label the RefEdit
for input data.

TextBox edtSample Not applicable Not applicable
Label Label2 Caption = Sampling

Interval
Label the TextBox
for sampling interval.

Label Label3 Caption =
Frequency:

Label the RefEdit
for frequency output.

Label Label4 Caption = FFT -
Real Part:

Label the RefEdit
for real part of FFT.

Label Label5 Caption = FFT -
Imaginary Part:

Label the RefEdit
for imaginary part of
FFT.

Label Label6 Caption = Power
Spectral Density

Label the RefEdit
for power spectral
density.

RefEdit refedtInput Not applicable Select range for input
data.

RefEdit refedtFreq Not applicable Select output range
for frequency points.

RefEdit refedtReal Not applicable Select output range
for real part of FFT of
input data.

RefEdit refedtImag Not applicable Select output range
for imaginary part of
FFT of input data.

RefEdit refedtPowSpect Not applicable Select output range
for power spectral
density of input data.

 Build and Integrate Spectral Analysis Functions

7-17

4 When the form and controls are complete, right-click the form, and select View code.

The following code listing shows the code to implement. Notice that this code references the
control and variable names listed in Controls for Spectral Analysis. If you used different names
for any of the controls or any global variable, change this code to reflect those differences.

'
'frmFourier Event handlers
'
Private Sub UserForm_Activate()
'UserForm Activate event handler. This function gets called before
'showing the form, and initializes all controls with values stored
'in global variables.
 On Error GoTo Handle_Error
 If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub
 'Initialize controls with current state
 If Not InputData Is Nothing Then
 refedtInput.Text = InputData.Address
 End If
 edtSample.Text = Format(Interval)
 If Not Frequency Is Nothing Then
 refedtFreq.Text = Frequency.Address
 End If
 If Not IsEmpty (theFFTData.Real) Then
 If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then
 refedtReal.Text = theFFTData.Real.Address
 End If
 End If
 If Not IsEmpty (theFFTData.Imag) Then
 If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then
 refedtImag.Text = theFFTData.Imag.Address
 End If
 End If
 If Not PowerSpect Is Nothing Then
 refedtPowSpect.Text = PowerSpect.Address
 End If
 chkPlot.Value = bPlot
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Private Sub btnCancel_Click()
'Cancel button click event handler. Exits form without computing fft
'or updating variables.
 Unload Me
End Sub
Private Sub btnOK_Click()
'OK button click event handler. Updates state of all variables from controls
'and executes the computefft or plotfft method.
 Dim R As Range

 If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form
 On Error Resume Next
 'Process inputs
 Set R = Range(refedtInput.Text)
 If Err <> 0 Then
 MsgBox ("Invalid range entered for Input Data")
 Exit Sub
 End If
 Set InputData = R
 Interval = CDbl(edtSample.Text)
 If Err <> 0 Or Interval <= 0 Then
 MsgBox ("Sampling interval must be greater than zero")
 Exit Sub
 End If
 'Process Outputs
 Set R = Range(refedtFreq.Text)
 If Err = 0 Then
 Set Frequency = R
 End If

7 Microsoft Excel Add-In Integration

7-18

 Set R = Range(refedtReal.Text)
 If Err = 0 Then
 theFFTData.Real = R
 End If
 Set R = Range(refedtImag.Text)
 If Err = 0 Then
 theFFTData.Imag = R
 End If
 Set R = Range(refedtPowSpect.Text)
 If Err = 0 Then
 Set PowerSpect = R
 End If
 bPlot = chkPlot.Value
 'Compute the fft and optionally plot power spectral density
 If bPlot Then
 Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect, _
 InputData, Interval)
 Else
 Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect, _
 InputData, Interval)
 End If
 GoTo Exit_Form
Handle_Error:
 MsgBox (Err.Description)
Exit_Form:
 Unload Me
End Sub

Add the Spectral Analysis Menu Item to Excel

Add a menu item to Excel so that you can open the tool from the Excel Tools menu. To do this, add
event handlers for the workbook events AddinInstall and AddinUninstall that install and
uninstall menu items. The menu item calls the LoadFourier function in the FourierMain module.

To implement the menu item:

1 Right-click the ThisWorkbook item in the VBA project window, and select View code.
2 Place the following code into ThisWorkbook.

Private Sub Workbook_AddinInstall()
'Called when Addin is installed
 Call AddFourierMenuItem
End Sub

Private Sub Workbook_AddinUninstall()
'Called when Addin is uninstalled
 Call RemoveFourierMenuItem
End Sub

Private Sub AddFourierMenuItem()
 Dim ToolsMenu As CommandBarPopup
 Dim NewMenuItem As CommandBarButton

 'Remove if already exists
 Call RemoveFourierMenuItem
 'Find Tools menu
 Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)
 If ToolsMenu Is Nothing Then Exit Sub
 'Add Spectral Analysis menu item
 Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)
 NewMenuItem.Caption = "Spectral Analysis..."
 NewMenuItem.OnAction = "LoadFourier"
End Sub

Private Sub RemoveFourierMenuItem()
Dim CmdBar As CommandBar
Dim Ctrl As CommandBarControl
On Error Resume Next
'Find tools menu and remove Spectral Analysis menu item

 Build and Integrate Spectral Analysis Functions

7-19

Set CmdBar = Application.CommandBars(1)
Set Ctrl = CmdBar.FindControl(ID:=30007)
Call Ctrl.Controls("Spectral Analysis...").Delete
End Sub

3 Save the add-in into the <project-folder>\for_testing.

<project-folder> refers to the project folder that Library Compiler used to save the Fourier
project.

Name the add-in Spectral Analysis.

a From the Excel main menu, select File > Properties.
b In the Workbook Properties dialog box, click the Summary tab, and enter Spectral

Analysis as the workbook title.
c Click OK to save the edits.
d From the Excel main menu, select File > Save As.
e In the Save As dialog box, select Microsoft Excel Add-In (*.xla) as the file type, and

browse to <project-folder>\for_testing.
f Enter Fourier.xla as the file name, and click Save.

Test the Add-In
Before distributing the add-in, test it with a sample problem. Spectral analysis is commonly used to
find the frequency components of a signal buried in a noisy time domain signal. Create a data
representation of a signal containing two distinct components, and add to it a random component.
This data along with the output is stored in columns of an Excel worksheet, and you plot the time-
domain signal along with the power spectral density.

Create the Test Problem

1 Start a new session of Excel with a blank workbook.
2 From the main menu, select Tools > Add-Ins.
3 In the Add-Ins dialog box, click Browse.
4 Browse to the <project-folder>\for_testing folder, select Fourier.xla, and click OK.

The Spectral Analysis add-in appears in the available Add-Ins list and is selected.
5 Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. To display the Spectral Analysis UI,
select Tools > Spectral Analysis. Before invoking the add-in, create some data, in this case a signal
with components at 15 Hz and 40 Hz. Sample the signal for 10 seconds at a sampling rate of 0.01 s.
Put the time points into column A and the signal points into column B.

Create the Data

1 Enter 0 for cell A1 in the current worksheet.
2 Click cell A2, and type the formula "= A1 + 0.01".
3 Click and hold the lower-right corner of cell A2 and drag the formula down the column to cell

A1001. This procedure fills the range A1:A1001 with the interval 0–10 incremented by 0.01.
4 Click cell B1, and type the following formula

"= SIN(2*PI()*15*A1) + SIN(2*PI()*40*A1) + RAND()"

Repeat the drag procedure to copy this formula to all cells in the range B1:B1001.

7 Microsoft Excel Add-In Integration

7-20

Run the Test

Using the column of data (column B), test the add-in as follows:

1 Select Tools > Spectral Analysis from the main menu.
2 Click the Input Data box.
3 Select the B1:B1001 range from the worksheet, or type this address into the Input Data field.
4 In the Sampling Interval field, type 0.01.
5 Select Plot time domain signal and power spectral density.
6 Enter C1:C1001 for frequency output, and likewise enter D1:D1001, E1:E1001, and F1:F1001

for the FFT real and imaginary parts, and spectral density.
7 Click OK to run the analysis.

The next figure shows the output.

The power spectral density reveals the two signals at 15 Hz and 40 Hz.

Package and Distribute the Add-In
Package the add-in, the COM component, and all supporting libraries into a self-extracting
executable. This package can be installed on other computers that use the Spectral Analysis
add-in.

1 On the Main File section of the toolstrip, choose one of these two options.

 Build and Integrate Spectral Analysis Functions

7-21

Option What Does This Option Do? When Should I Use This
Option?

Runtime downloaded from web The MATLAB Runtime installer
downloads the MATLAB Runtime
from the MathWorks website.

• You have many end users who
deploy applications frequently

• Your users have Internet access
• Resources such as disk space,

performance, and processing
time are significant concerns
for your organization

Runtime included in package The MATLAB Runtime is included
in the generated installer, which
uses the included MATLAB
Runtime.

• You have a limited number of
end users who deploy a few
applications at sporadic
intervals

• Your users have no Internet
access

• Resources such as disk space,
performance, and processing
time are not significant
concerns

Note Distributing the MATLAB
Runtime with the application
requires more resources.

2 Add others files that would be useful to end users.

To package additional files or folders, add them to the Files installed for your end user field.
See “Specify Files to Install with Application” on page 3-6.

3 Click Package.

Install the Add-In
To install this add-in on another computer, copy the Fourier_pkg.exe package to that machine, run
it from a command prompt, and follow the instructions in the GettingStarted.html file that is
automatically generated with your packaged output.

7 Microsoft Excel Add-In Integration

7-22

For More Information
For more information about... See...
Functions available through MATLAB Compiler Function reference in MATLAB Compiler

documentation
Utility functions you can use to customize COM
components created with MATLAB Compiler

“Reference Utility Classes” on page 10-2

 For More Information

7-23

Distribution to End Users

• “Distribute Your Add-Ins and COM Components to End Users” on page 8-2
• “Distribute Visual Basic Application” on page 8-4
• “For More Information” on page 8-12

8

Distribute Your Add-Ins and COM Components to End Users

MATLAB Runtime
MATLAB Runtime is an execution engine made up of the same shared libraries MATLAB uses to
enable execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime is available to download from the web to simplify the distribution of your
applications created using the MATLAB Compiler or the MATLAB Compiler SDK. Download the
MATLAB Runtime from the MATLAB Runtime product page or use the
compiler.runtime.download MATLAB function.

The MATLAB Runtime installer performs the following actions:

1 Install the MATLAB Runtime.
2 Install the component assembly in the folder from which the installer is run.
3 Copy the MWArray assembly to the Global Assembly Cache (GAC).

MATLAB Runtime Prerequisites

1 The MATLAB Runtime installer requires administrator privileges to run.
2 The version of MATLAB Runtime that runs your application on the target computer must be the

same as the version of MATLAB Compiler or MATLAB Compiler SDK that built the deployed code,
at the same update level or newer.

3 Do not install the MATLAB Runtime in MATLAB installation directories.
4 The MATLAB Runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB Runtime in the generated installer using one of the
compiler apps. The generated installer contains all files needed to run the standalone application or
shared library built with MATLAB Compiler or MATLAB Compiler SDK and properly lays them out on
a target system.

1 On the Packaging Options section of the compiler interface, select one or both of the following
options:

• Runtime downloaded from web — This option builds an installer that downloads the
MATLAB Runtime installer from the MathWorks website.

• Runtime included in package — The option includes the MATLAB Runtime installer in the
generated installer.

2 Click Package.
3 Distribute the installer to end users.

Install the MATLAB Runtime

For instructions on how to install the MATLAB Runtime on a system, see “Install and Configure
MATLAB Runtime”.

8 Distribution to End Users

8-2

https://www.mathworks.com/products/compiler/matlab-runtime.html

If you are given an installer containing the compiled artifacts, then MATLAB Runtime is installed
along with the application or shared library. If you are given just the raw binary files, you must
download and run the MATLAB Runtime installer.

Note On Windows, paths are set automatically by the installer. If you are running on a platform other
than Windows, you must either modify the path on the target machine or use a shell script to launch
the compiled application. Setting the paths enables your application executable to find MATLAB
Runtime. For more information on setting the path, see “Set MATLAB Runtime Path for Run-Time
Deployment”.

 Distribute Your Add-Ins and COM Components to End Users

8-3

Distribute Visual Basic Application

In this section...
“Calling Compiled MATLAB Functions from Microsoft Excel” on page 8-4
“Improve Data Access Using the MATLAB Runtime User Data Interface and COM Components” on
page 8-5
“MATLAB Runtime Component Cache and Deployable Archive Embedding” on page 8-9
“MATLAB Runtime Options” on page 8-11

Calling Compiled MATLAB Functions from Microsoft Excel
In order to call compiled MATLAB functions from within a Microsoft Excel spreadsheet, perform the
following from the Development and Deployment machines, as specified.

Note In order for a function to be called using the Microsoft Excel function syntax
(=myfunction(input)), the MATLAB function must return a single scalar output argument.

Perform the following steps on the Development machine:

1 Create the following MATLAB functions in three separate files named doubleit.m,
incrementit.m, and powerit.m, respectively:

 function output = doubleit(input)
 output = input * 2;

function output = incrementit(input1, input2)
 output = input1 + input2;

 function output = powerit(input1, input2)
 output = power(input1, input2);

2 Start the Library Compiler.
3 Use the following information as you work through this example using the instructions in “Create

Excel Add-In from MATLAB” on page 2-7:

Application Name myexcelfunctions
Class Name myexcelfunctionsclass
Exported Functions doubleit.m incrementit.m powerit.m

Perform the following steps on the Deployment machine:

1 Copy the contents of for_redistribution_files_only to the deployment machine(s). Copy
the file to a standard place for use with Microsoft Excel, such as
Office_Installation_folder\Library\MATLAB where Office_Installation_folder is
a folder such as C:\Program Files\Microsoft Office\OFFICE11.

2 “Install and Configure MATLAB Runtime”.
3 Register myexcelfunctions_1_0.dll.

8 Distribution to End Users

8-4

Caution You need to re-register your DLL file if you move it following its creation. Unlike DLL
files, Excel files can be moved anywhere at anytime.

4 Start Microsoft Excel. The spreadsheet Book1 should be open by default.
5 In Excel, select Tools > Visual Basic Editor. The Microsoft Visual Basic Editor starts.
6 In the Microsoft Visual Basic Editor, select File > Import File.
7 Browse to myexcelfunctions.bas and click Open. In the Project Explorer, Module1 appears

under the Modules node beneath VBAProject (Book1).
8 In the Microsoft Visual Basic Editor, select View > Microsoft Excel. You can now use the

doubleit, incrementit, and powerit functions in your Book1 spreadsheet.
9 Test the functions, by doing the following:

a Enter =doubleit(2.5) in cell A1.
b Enter =incrementit(11,17) in cell A2.
c Enter =powerit(7,2) in cell A3.

You should see values 5, 28, and 49 in cells A1, A2, and A3 respectively.
10 To use the doubleit, powerit, and incrementit functions in all your new Microsoft Excel

spreadsheets, do the following:

a Select File > Save As.
b Change the Save as type option to .xlt (Template).
c Browse to the Office_Installation_folder\XLSTART folder.
d Save the file as Office_Installation_folder\XLSTART\Book.xlt.

Note Your Microsoft Excel Macro Security level must be set at Medium or Low to save this
template.

Where Is the Example Code?

For more information about accessing the example code from within the product ,see “Example File
Copying” on page 4-19.

Improve Data Access Using the MATLAB Runtime User Data Interface
and COM Components
• “Overview” on page 8-5
• “Supply Run-Time Profile Information for Parallel Computing Toolbox Applications” on page 8-6

Overview

This feature provides a lightweight interface for easily accessing the MATLAB Runtime data. It allows
data to be shared between the MATLAB Runtime instance, the MATLAB code running on that the
MATLAB Runtime, and the wrapper code that created the MATLAB Runtime. Through calls to the
MATLAB Runtime User Data interface API, you access the MATLAB Runtime data by creating a per
MATLAB Runtime instance associative array of mxArrays, consisting of a mapping from string keys
to mxArray values. Reasons for doing this include, but are not limited to:

• You need to supply run-time profile information to a client running an application created with the
Parallel Computing Toolbox™. Profile information may be supplied (and change) on a per-

 Distribute Visual Basic Application

8-5

execution basis. For example, two instances of the same application may run simultaneously with
different profiles.

• You want to initialize the MATLAB Runtime with constant values that can be accessed by all your
MATLAB applications.

• You want to set up a global workspace — a global variable or variables that the MATLAB and your
client can access.

• You want to store the state of any variable or group of variables.

MATLAB Compiler supports per the MATLAB Runtime instance state access through an object-
oriented API. Unlike MATLAB Compiler, access to per the MATLAB Runtime instance state is
optional, rather than on by default. You can access this state by adding setmcruserdata.m and
getmcruserdata.m to your deployment project or by specifying them on the command line.
Alternately, you use a helper function to call these methods, as shown in “Supply Run-Time Profile
Information for Parallel Computing Toolbox Applications” on page 8-6.

For more information, see the MATLAB Compiler User's Guide.

Supply Run-Time Profile Information for Parallel Computing Toolbox Applications

Following is a complete example of how you can use the MATLAB Runtime User Data Interface as a
mechanism to specify a profile for Parallel Computing Toolbox applications.

Note Standalone executables and shared libraries generated from MATLAB Compiler or MATLAB
Compiler SDK for parallel applications can now launch up to twelve local workers without MATLAB
Parallel Server™.

Step 1: Write Your Parallel Computing Toolbox Code

1 Compile sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile.

The output assumes that the default profile is local.

function speedup = sample_pct (n)
warning off all;
tic
if(ischar(n))
 n=str2double(n);
end
for ii = 1:n
 (cov(sin(magic(n)+rand(n,n))));
end
time1 =toc;
parpool;
tic
parfor ii = 1:n
 (cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop times: ' num2str(time1) ...
 ',parallel loop time: ' num2str(time2)]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

8 Distribution to End Users

8-6

 ' times faster than normal']);
delete(gcp);
disp('done');
speedup = (time1/time2);

2 Run the code as follows after changing the default profile to local, if needed.

a = sample_pct(200)

3 Verify that you get the following results:

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Normal loop times: 0.7587,parallel loop time: 2.9988
parallel speedup: 0.253 times faster than normal
Parallel pool using the 'local' profile is shutting down.
done

a =

 0.2530

Step 2: Set the Parallel Computing Toolbox Profile

In order to compile MATLAB code to a COM component and utilize the Parallel Computing Toolbox,
the mcruserdata must be set directly from MATLAB. There is no API available to access the
MCRUserdata as there is for C and C++ applications built with MATLAB Compiler.

To set the mcruserdata from MATLAB, create an init function in your COM class. This is a
separate MATLAB function that uses setmcruserdata to set the Parallel Computing Toolbox profile
once. You then call your other functions to utilize the Parallel Computing Toolbox functions.

Create the following init function:

function init_sample_pct
% Set the Parallel Profile:
if(isdeployed)
 [profile] = uigetfile('*.settings');
 % let the USER select file
 setmcruserdata('ParallelProfile',[profile]);
end

Step 3: Compile Your Function with the Deploytool or the Command Line

You can compile your function from the command line by entering the following:

mcc -B 'cexcel:exPctComp,exPctClass,1.0' init_sample_pct.m sample_pct.m

Alternately, you can use the deploytool as follows:

1 Follow the steps in “Create Excel Add-In from MATLAB” on page 2-7 to compile your application.

When the compilation finishes, a new folder (with the same name as the project) is created.

Project Name exPctComp
Class Name exPctClass
File to compile sample_pct.m and init_sample_pct.m

 Distribute Visual Basic Application

8-7

Note If you are using the GPU feature of Parallel Computing Toolbox, you need to manually add
the PTX and CU files.

If you are using the Library Compiler app, click Add files/directories on the Build tab.

If you are using the mcc command, use the -a option.
2 To deploy the compiled application, copy the for_redistribution_files_only folder, which

contains the following, to your end users.

• exPctComp.dll
• VBA module (.bas file)
• MATLAB Runtime installer
• Cluster profile

Note The end-user's target machine must have access to the cluster.

Step 4: Modify the generated VBA Driver Application (the BAS File)

After registering the COM DLL on the deployment machine and importing the BAS file into Excel,
modify the generated BAS file code as needed.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean
Dim exPctClass As Object

Private Sub InitModule()
 If Not bModuleInitialized Then
 On Error GoTo Handle_Error
 If MCLUtil Is Nothing Then
 Set MCLUtil = CreateObject("MWComUtil.MWUtil7.10")
 End If
 Call MCLUtil.MWInitApplication(Application)
 bModuleInitialized = True
 Exit Sub
Handle_Error:
 bModuleInitialized = False
 End If
End Sub

Function init_sample_pct() As Variant

 On Error GoTo Handle_Error
 Call InitModule
 If exPctClass Is Nothing Then
 Set exPctClass = CreateObject("exPctComp.exPctClass.1_0")
 End If
 Call exPctClass.init_sample_pct
 init_sample_pct = Empty

 Exit Function
Handle_Error:
 init_sample_pct = "Error in " &
 Err.Source & ": " & Err.Description
End Function

8 Distribution to End Users

8-8

Function sample_pct(Optional pelle As Variant) As Variant
 Dim speedup As Variant

 On Error GoTo Handle_Error
 Call InitModule
 If exPctClass Is Nothing Then
 Set exPctClass = CreateObject("exPctComp.exPctClass.1_0")
 End If
 Call exPctClass.sample_pct(1, speedup, pelle)
 sample_pct = speedup

 Exit Function
Handle_Error:
 sample_pct = "Error in " & Err.Source
 & ": " & Err.Description
End Function

The output is as follows:

MATLAB Runtime Component Cache and Deployable Archive
Embedding
• “Overriding Default Behavior” on page 8-10
• “For More Information” on page 8-10

deployable archive data is automatically embedded directly in MATLAB Compiler components by
default and extracted to a temporary folder.

Automatic embedding enables usage of MATLAB Runtime Component Cache features through
environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically extracted
• Add diagnostic error printing options that can be used when automatically extracting the

deployable, for troubleshooting purposes
• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

 Distribute Visual Basic Application

8-9

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of where

you want the deployable archive to
be extracted, this variable overrides
the default per-user component
cache location. This is true for
embedded .ctf files only.

On macOS, this variable is ignored
in MATLAB R2020a and later. The
app bundle contains the files
necessary for runtime.

MCR_CACHE_SIZE When set, this variable overrides
the default component cache size.

The initial limit for this variable is
32M (megabytes). This may,
however, be changed after you have
set the variable the first time. Edit
the file .max_size, which resides
in the file designated by running the
mcrcachedir command, with the
desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with the -C option.
See “Overriding Default Behavior” on page 8-10 for details.

Note If you run mcc specifying conflicting wrapper and target types, the deployable archive will not
be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the deployable archive embedded in it, as if you had specified
a -C option to the command line.

Caution Do not extract the files within the.ctf file and place them individually under version
control. Since the .ctf file contains interdependent MATLAB functions and data, the files within it
must be accessed only by accessing the .ctf file. For best results, place the entire .ctf file under
version control.

Overriding Default Behavior

To extract the deployable archive in a manner prior to R2008b, alongside the compiled COM
component, compile using the mcc -c option.

You can also implement this override by adding the -c flag in the Settings section of the compiler
app.

You might want to use this option to troubleshoot problems with the deployable archive, for example,
as the log and diagnostic messages are much more visible.

For More Information

For more information about the deployable archive, see “Deployable Archive” on page 5-6.

8 Distribution to End Users

8-10

MATLAB Runtime Options
What MATLAB Runtime Options are Supported by MATLAB Compiler?

• -logfile — Creates a named log file.

How Do I Specify MATLAB Runtime Options?
If You Compiled the Add-In in MATLAB or used mcc

If you are building your add-in using the MATLAB Library Compiler, select Create log file under
Additional Runtime Settings.

If you are building your add-in using mcc, simply specify -logfile with the mcc -R command

If You Created a Function From Scratch Using the Function Wizard

If you created a function from scratch using the Function Wizard, and want to specify MATLAB
Runtime options, you have to manually modify the .bas file code.

You do this by invoking the following MWUtil API calls, detailed with examples in “Class MWUtil” on
page 10-3:

• Sub MWInitApplicationWithMCROptions(pApp As Object, [mcrOptionList]) on page
10-4

• Function IsMCRJVMEnabled() As Boolean on page 10-5
• Function IsMCRInitialized() As Boolean on page 10-5

 Distribute Visual Basic Application

8-11

For More Information
For more information about... See...
Functions available through MATLAB Compiler Function Reference pages in MATLAB Compiler

documentation
Utility functions you can use to customize COM
components created with MATLAB Compiler

“Reference Utility Classes” on page 10-2

8 Distribution to End Users

8-12

Functions

9

compiler.build.excelAddIn
Create Microsoft Excel add-in

Syntax
compiler.build.excelAddIn(FunctionFiles)
compiler.build.excelAddIn(FunctionFiles,Name,Value)
compiler.build.excelAddIn(opts)
results = compiler.build.excelAddIn(___)

Description

Caution This function is only supported on Windows operating systems.

compiler.build.excelAddIn(FunctionFiles) creates an Excel add-in using MATLAB functions
specified by FunctionFiles. Before creating Excel add-ins, install a supported compiler.

compiler.build.excelAddIn(FunctionFiles,Name,Value) creates an Excel add-in with
options specified using one or more name-value arguments. Options include the add-in name, the
output directory, and whether to generate a Microsoft Visual Basic file.

compiler.build.excelAddIn(opts) creates an Excel add-in with options specified using a
compiler.build.excelAddInOptions object opts. You cannot specify any other options using
name-value arguments.

results = compiler.build.excelAddIn(___) returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, paths to the compiled files, and build
options.

Examples

Create Excel Add-In

Create an Excel add-in on a Windows system using a function file that generates a magic square.

In MATLAB, locate the MATLAB function that you want to deploy as an Excel add-in. For this
example, use the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build an Excel add-in using the compiler.build.excelAddIn command.
compiler.build.excelAddIn(appFile);

The function generates the following files within a folder named magicsquareexcelAddIn in your
current working directory:

9 Functions

9-2

https://www.mathworks.com/support/requirements/supported-compilers.html

• dlldata.c
• GettingStarted.html
• magicsquare.def
• magicsquare.bas (Only if you enable the 'GenerateVisualBasicFile' option)
• magicsquare.rc
• magicsquare.xla (Only if you enable the 'GenerateVisualBasicFile' option)
• magicsquare_1_0.dll
• magicsquare_dll.cpp
• magicsquare_idl.h
• magicsquare_idl.idl
• magicsquare_idl.tlb
• magicsquare_idl_i.c
• magicsquare_idl_p.c
• magicsquareClass_com.cpp
• magicsquareClass_com.hpp
• mccExcludedFiles.log
• mwcomtypes.h
• mwcomtypes_i.c
• mwcomtypes_p.c
• readme.txt
• requiredMCRProducts.txt
• unresolvedSymbols.txt

Customize Excel Add-In

Create an Excel add-in on a Windows system and customize it using name-value arguments.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build an Excel add-in using the compiler.build.excelAddIn command. Use name-value
arguments to specify the add-in name and version, generate a Microsoft Visual Basic file, and enable
verbose output.
compiler.build.excelAddIn(appFile,'AddInName','MyMagicSquare',...
 'AddInVersion','2.0',...
 'GenerateVisualBasicFile','on',...
 'Verbose','on');

The function generates the following files within a folder named MyMagicSquareexcelAddIn in
your current working directory:

• dlldata.c
• GettingStarted.html

 compiler.build.excelAddIn

9-3

• magicsquareClass_com.cpp
• magicsquareClass_com.hpp
• mccExcludedFiles.log
• mwcomtypes.h
• mwcomtypes_i.c
• mwcomtypes_p.c
• MyMagicSquare.bas
• MyMagicSquare.def
• MyMagicSquare.rc
• MyMagicSquare.xla
• MyMagicSquare_2_0.dll
• MyMagicSquare_dll.cpp
• MyMagicSquare_idl.h
• MyMagicSquare_idl.idl
• MyMagicSquare_idl.tlb
• MyMagicSquare_idl_i.c
• MyMagicSquare_idl_p.c
• readme.txt
• requiredMCRProducts.txt
• unresolvedSymbols.txt

Create Multiple Add-Ins Using Options Object

Create multiple Excel add-ins on a Windows system using a compiler.build.ExcelAddInOptions
object.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Create an ExcelAddInOptions object using appFile. Use name-value arguments to specify a
common output directory, generate a Visual Basic file, and enable verbose output.
opts = compiler.build.excelAddInOptions(appFile,...
 'OutputDir','D:\Documents\MATLAB\work\ExcelAddInBatch',...
 'GenerateVisualBasicFile','on',...
 'Verbose','on')

opts =

 ExcelAddInOptions with properties:

 AddInName: 'magicsquare'
 AddInVersion: '1.0.0.0'
 ClassName: 'magicsquareClass'
 DebugBuild: off
 EmbedArchive: on
 FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}

9 Functions

9-4

 GenerateVisualBasicFile: on
 AdditionalFiles: {}
 AutoDetectDataFiles: on
 Verbose: on
 OutputDir: 'D:\Documents\MATLAB\work\ExcelAddInBatch'

Build the add-in using the ExcelAddInOptions object.
compiler.build.excelAddIn(opts);

To create a new add-in using the function file myMagic2.m with the same options, use dot notation to
modify the FunctionFiles argument of the existing ExcelAddInOptions object before running
the build function again.
opts.FunctionFiles = 'myMagic2.m';
compiler.build.excelAddIn(opts);

By modifying the FunctionFiles argument and recompiling, you can create multiple add-ins using
the same options object.

Get Build Information from Excel Add-In

Create an Excel add-in and save information about the build type, generated files, and build options
to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.excelAddIn('magicsquare.m')

results =

 Results with properties:

 BuildType: 'excelAddIn'
 Files: {2×1 cell}
 Options: [1×1 compiler.build.ExcelAddInOptions]

The Files property contains the paths to the following compiled files:

• magicsquare_1_0.dll
• GettingStarted.html

Note The files magicsquare.bas and magicsquare.xla are included in Files only if you enable
the 'GenerateVisualBasicFile' option in the build command.

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]

 compiler.build.excelAddIn

9-5

Data Types: char | string | cell

opts — Excel add-in build options
compiler.build.ExcelAddInOptions object

Excel add-in build options, specified as a compiler.build.ExcelAddInOptions object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose','on'

AddInName — Name of Excel add-in
character vector | string scalar

Name of the Excel add-in, specified as a character vector or string scalar. The default name of the
generated add-in is the first entry of the FunctionFiles argument. The name must begin with a
letter and contain only alphabetic characters and underscores.
Example: 'AddInName','myAddIn'
Data Types: char | string

AddInVersion — Add-in version
'1.0.0.0' (default) | character vector | string scalar

Add-in version, specified as a character vector or a string scalar.
Example: 'AddInVersion','4.0'
Data Types: char | string

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files to include in the Excel add-in, specified as a character vector, a string scalar, a string
array, or a cell array of character vectors. File paths can be relative to the current working directory
or absolute.
Example: 'AdditionalFiles',["myvars.mat","data.txt"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the add-in.

• If you set this property to 'off', then you must add data files to the add-in using the
AdditionalFiles property.

9 Functions

9-6

Example: 'AutoDetectDataFiles','Off'
Data Types: logical

ClassName — Name of class
character vector | string scalar

Name of the class, specified as a character vector or a string scalar. Class names must match Excel
add-in class name requirements.

The default value is the name of the first file listed in the FunctionFiles argument appended with
Class.
Example: 'ClassName','magicsquareClass'
Data Types: char | string

DebugBuild — Flag to enable debug symbols
'on' (default) | on/off logical value

Flag to enable debug symbols, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the add-in is compiled with debug symbols.
• If you set this property to 'off', then the add-in is not compiled with debug symbols.

Example: 'DebugSymbols','On'
Data Types: logical

EmbedArchive — Flag to embed deployable archive
'on' (default) | on/off logical value

Flag to embed the deployable archive, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function embeds the deployable archive in the Excel add-
in.

• If you set this property to 'off', then the function generates the deployable archive as a separate
file.

Example: 'EmbedArchive','Off'
Data Types: logical

GenerateVisualBasicFile — Flag to generate Visual Basic file
'off' (default) | on/off logical value

Flag to generate a Visual Basic file (.bas) and an Excel add-in file (.xla), specified as 'on' or
'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and
'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The
value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

 compiler.build.excelAddIn

9-7

• If you set this property to 'on', then the function generates an Excel add-in XLA file and a Visual
Basic BAS file containing the Microsoft Excel Formula Function interface to the add-in.

• If you set this property to 'off', then the function does not generate a Visual Basic file or an
Excel add-in file.

Example: 'GenerateVisualBasicFile','On'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the add-in name appended with excelAddIn.
Example: 'OutputDir','D:\Documents\MATLAB\work\mymagicexcelAddIn'
Data Types: char | string

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object contains:

• Build type, which is 'excelAddIn'
• Paths to the following files:

• GettingStarted.html
• AddInName_AddInVersion.dll
• AddInName.bas (if you enable the 'GenerateVisualBasicFile' option)
• AddInName.xla (if you enable the 'GenerateVisualBasicFile' option)

• Build options, specified as an ExcelAddInOptions object

9 Functions

9-8

Limitations
• This function is only supported on Windows operating systems.

See Also
Library Compiler | compiler.build.ExcelAddInOptions | mcc

Introduced in R2021a

 compiler.build.excelAddIn

9-9

compiler.build.ExcelAddInOptions
Options for building Excel add-ins

Syntax
opts = compiler.build.ExcelAddInOptions(FunctionFiles)
opts = compiler.build.ExcelAddInOptions(FunctionFiles,Name,Value)

Description
opts = compiler.build.ExcelAddInOptions(FunctionFiles) creates an
ExcelAddInOptions object using the MATLAB functions specified by FunctionFiles. Use the
ExcelAddInOptions object as an input to the compiler.build.excelAddIn function.

opts = compiler.build.ExcelAddInOptions(FunctionFiles,Name,Value) creates an
ExcelAddInOptions object with options specified using one or more name-value arguments.
Options include the add-in name, additional files to include, and the output directory.

Examples

Create Excel Add-In Options Object

Create an ExcelAddInOptions object using file input.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.ExcelAddInOptions(appFile)

opts =

 ExcelAddInOptions with properties:

 AddInName: 'magicsquare'
 AddInVersion: '1.0.0.0'
 ClassName: 'magicsquareClass'
 DebugBuild: off
 EmbedArchive: on
 FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
 GenerateVisualBasicFile: off
 AdditionalFiles: {}
 AutoDetectDataFiles: on
 Verbose: off
 OutputDir: '.\magicsquareexcelAddIn'

You can modify the property values of an existing ExcelAddInOptions object using dot notation.
For example, enable verbose output.
opts.Verbose = 'on'

9 Functions

9-10

opts =

 ExcelAddInOptions with properties:

 AddInName: 'magicsquare'
 AddInVersion: '1.0.0.0'
 ClassName: 'magicsquareClass'
 DebugBuild: off
 EmbedArchive: on
 FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
 GenerateVisualBasicFile: off
 AdditionalFiles: {}
 AutoDetectDataFiles: on
 Verbose: on
 OutputDir: '.\magicsquareexcelAddIn'

Use the ExcelAddInOptions object as an input to the compiler.build.excelAddIn function to
build the Excel add-in.
buildResults = compiler.build.excelAddIn(opts);

Customize Excel Add-In Options Object

Create an ExcelAddInOptions object and customize it using name-value arguments.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler. Use name-value arguments to specify the output directory, generate a Visual Basic file,
and enable verbose output.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.ExcelAddInOptions(appFile,...
 'OutputDir','D:\Documents\MATLAB\work\MagicSquareAddIn',...
 'GenerateVisualBasicFile','On')

opts =

 ExcelAddInOptions with properties:

 AddInName: 'magicsquare'
 AddInVersion: '1.0.0.0'
 ClassName: 'magicsquareClass'
 DebugBuild: off
 EmbedArchive: on
 FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
 GenerateVisualBasicFile: on
 AdditionalFiles: {}
 AutoDetectDataFiles: on
 Verbose: off
 OutputDir: 'D:\Documents\MATLAB\work\MagicSquareAddIn'

Use the ExcelAddInOptions object as an input to the compiler.build.excelAddIn function to
build the Excel add-in.

 compiler.build.ExcelAddInOptions

9-11

buildResults = compiler.build.excelAddIn(opts);

Input Arguments
FunctionFiles — MATLAB function files
character vector | string scalar | cell array of character vectors | string array

List of files implementing MATLAB functions, specified as a character vector, a string scalar, a string
array, or a cell array of character vectors. Files must have a .m extension.
Example: {'myFunction1.m','myFunction2.m'}
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose','on'

AddInName — Name of Excel add-in
character vector | string scalar

Name of the Excel add-in, specified as a character vector or string scalar. The default name of the
generated add-in is the first entry of the FunctionFiles argument. The name must begin with a
letter and contain only alphabetic characters and underscores.
Example: 'AddInName','myAddIn'
Data Types: char | string

AddInVersion — Add-in version
'1.0.0.0' (default) | character vector | string scalar

Add-in version, specified as a character vector or a string scalar.
Example: 'AddInVersion','4.0'
Data Types: char | string

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files to include in the Excel add-in, specified as a character vector, a string scalar, a string
array, or a cell array of character vectors. File paths can be relative to the current working directory
or absolute.
Example: 'AdditionalFiles',["myvars.mat","data.txt"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can

9 Functions

9-12

use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the add-in.

• If you set this property to 'off', then you must add data files to the add-in using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','Off'
Data Types: logical

ClassName — Name of class
character vector | string scalar

Name of the class, specified as a character vector or a string scalar. Class names must match Excel
add-in class name requirements.

The default value is the name of the first file listed in the FunctionFiles argument appended with
Class.
Example: 'ClassName','magicsquareClass'
Data Types: char | string

DebugBuild — Flag to enable debug symbols
'on' (default) | on/off logical value

Flag to enable debug symbols, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the add-in is compiled with debug symbols.
• If you set this property to 'off', then the add-in is not compiled with debug symbols.

Example: 'DebugSymbols','On'
Data Types: logical

EmbedArchive — Flag to embed deployable archive
'on' (default) | on/off logical value

Flag to embed the deployable archive, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function embeds the deployable archive in the Excel add-
in.

• If you set this property to 'off', then the function generates the deployable archive as a separate
file.

Example: 'EmbedArchive','Off'
Data Types: logical

 compiler.build.ExcelAddInOptions

9-13

GenerateVisualBasicFile — Flag to generate Visual Basic file
'off' (default) | on/off logical value

Flag to generate a Visual Basic file (.bas) and an Excel add-in file (.xla), specified as 'on' or
'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and
'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The
value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function generates an Excel add-in XLA file and a Visual
Basic BAS file containing the Microsoft Excel Formula Function interface to the add-in.

• If you set this property to 'off', then the function does not generate a Visual Basic file or an
Excel add-in file.

Example: 'GenerateVisualBasicFile','On'
Data Types: logical

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the add-in name appended with excelAddIn.
Example: 'OutputDir','D:\Documents\MATLAB\work\mymagicexcelAddIn'
Data Types: char | string

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

Output Arguments
opts — Excel add-in build options
ExcelAddInOptions object

Excel add-in build options, returned as an ExcelAddInOptions object.

See Also
compiler.build.excelAddIn | mcc

9 Functions

9-14

Introduced in R2021a

 compiler.build.ExcelAddInOptions

9-15

componentinfo
Query system registry about component created with MATLAB Compiler

Syntax
info = componentinfo
info = componentinfo(component_name)
info = componentinfo(component_name, major_revision_number)
info = componentinfo(component_name, major_revision_number,
minor_revision_number)

Arguments
component_name MATLAB character vector or string scalar providing the

name of a MATLAB Compiler component. Names are
case sensitive. If this argument is not supplied, the
function returns information on all installed
components.

major_revision_number Component major revision number. If this argument is
not supplied, the function returns information on all
major revisions.

minor_revision_number Component minor revision number. Default value is 0.

Description
info = componentinfo returns information for all components installed on the system.

info = componentinfo(component_name) returns information for all revisions of
component_name.

info = componentinfo(component_name, major_revision_number) returns information for
the most recent minor revision corresponding to major_revision_number of component_name.

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major and minor version of
component_name.

The return value is an array of structures representing all the registry and type information needed
to load and use the component.

When you supply a component name, major_revision_number and minor_revision_number are
interpreted as shown below.

Value Information Returned
> 0 Information on a specific major and minor revision
0 Information on the most recent revision.

When omitted, minor_revision_number is assumed to be equal to 0.

9 Functions

9-16

Value Information Returned
< 0 Information on all versions

Note Although properties and events may appear in the output for componentinfo, they are not
supported by MATLAB Compiler SDK.

Registry Information
The information about a component has the fields shown in the following table.

Registry Information Returned by componentinfo

Field Description
Name Component name.
TypeLib Component type library.
LIBID Component type library GUID.
MajorRev Major version number.
MinorRev Minor version number.
FileName Type library file name and path. Since all the MATLAB Compiler

components have the type library bound into the DLL, this file name is the
same as the DLL name and path.

Interfaces An array of structures defining all interface definitions in the type library.
Each structure contains two fields:

• Name - Interface name.
• IID - Interface GUID.

 componentinfo

9-17

Registry Information Returned by componentinfo (Continued)

CoClasses An array of structures defining all COM classes in the component.
Each structure contains these fields:

• Name - Class name.
• CLSID - GUID of the class.
• ProgID - Version-dependent program ID.
• VerIndProgID - Version-independent program ID.
• InprocServer32 - Full name and path to component DLL.
• Methods - A structure containing function prototypes of all

class methods defined for this interface. This structure contains
four fields:

• IDL - An array of Interface Description Language function
prototypes.

• M - An array of MATLAB function prototypes.
• C - An array of C-language function prototypes.
• VB - An array of VBA function prototypes.

• Properties - A cell array containing the names of all class
properties.

• Events - A structure containing function prototypes of all events
defined for this class. This structure contains four fields:

• IDL - An array of Interface Description Language function
prototypes.

• M - An array of MATLAB function prototypes.
• C - An array of C-language function prototypes.
• VB - An array of VBA function prototypes.

Examples
Function Call Returns
Info = componentinfo Information for all installed components.
Info = componentinfo('mycomponent') Information for all revisions of

mycomponent.
Info = componentinfo('mycomponent',1,0) Information for revision 1.0 of

mycomponent.

Introduced in R2015a

9 Functions

9-18

deploytool
Open a list of application deployment apps

Syntax
deploytool
deploytool project_name

Description
deploytool opens a list of application deployment apps.

deploytool project_name opens the appropriate deployment app with the project preloaded.

Examples

Open a List of Application Deployment Apps

Open the list of apps.

deploytool

Input Arguments
project_name — name of the project to be opened
character array or string

Name of the project to be opened by the appropriate deployment app, specified as a character array
or string. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

Introduced in R2006b

 deploytool

9-19

libraryCompiler
Open the Library Compiler app

Syntax
libraryCompiler
libraryCompiler project_name

Description
libraryCompiler opens the Library Compiler app for the creation of a new compiler project

libraryCompiler project_name opens the Library Compiler app with the project preloaded.

Examples

Create a New Project

Open the Library Compiler app to create a new project.

libraryCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

Introduced in R2013b

9 Functions

9-20

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -m options mfilename
mcc -e options mfilename

mcc -W 'excel:addin_name,className,version=version_number' -T link:lib
options mfilename1 mfilename2...mfilenameN

mcc -H -W hadoop:archiveName,CONFIG:configFile mfilename

mcc -m options mfilename

Description
General Usage

mcc options mfilename1 mfilename2...mfilenameN compiles the functions as specified by
the options. The options used depend on the intended results of the compilation.

For information on compiling:

• C/C++ shared libraries, .NET assemblies, Java packages, or Python packages, see mcc for
MATLAB Compiler SDK

• MATLAB Production Server™ deployable archives or Excel add-ins for MATLAB Production
Server, see mcc for MATLAB Compiler SDK

Standalone Application

mcc -m options mfilename compiles the function into a standalone application.

This is equivalent to mcc -W main -T link:exe.

mcc -e options mfilename compiles the function into a standalone application that does not
open a Windows command prompt on execution. The -e option works only on Windows operating
systems.

This syntax is equivalent to -W WinMain -T link:exe.

Excel Add-In

mcc -W 'excel:addin_name,className,version=version_number' -T link:lib
options mfilename1 mfilename2...mfilenameN creates a Microsoft Excel add-in from the
specified files.

• addin_name — Specifies the name of the add-in.

 mcc

9-21

• className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the addin_name as the default. If specified, className needs to be different from
mfilename.

• version_number — Specifies the version number of the add-in file as major.minor.bug.build
in the file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number to 1.0.0.0 by default.

• major — Specifies the major version number. If you do not specify a number, mcc sets major
to 0.

• minor — Specifies the minor version number. If you do not specify a number, mcc sets minor
to 0.

• bug— Specifies the bug fix maintenance release number. If you do not specify a number, mcc
sets bug to 0.

• build— Specifies the build number. If you do not specify a number, mcc sets build to 0.

Note Excel add-ins can be created only in MATLAB running on Windows.

Note Remove the single quotes around 'excel:addin_name,className,version' when
executing the mcc command from a DOS prompt.

MapReduce Applications on Hadoop

mcc -H -W hadoop:archiveName,CONFIG:configFile mfilename generates a deployable
archive from mfilename that can be run as a job by Hadoop®.

• archiveName — Specifies the name of the generated archive.
• configFile — Specifies the path to the configuration file for creating a deployable archive. For

more information, see “Configuration File for Creating Deployable Archive Using the mcc
Command”.

Tip You can issue the mcc command either at the MATLAB command prompt or the Windows or
Linux system command-line.

Simulink Simulations (Requires Simulink Compiler)

mcc -m options mfilename compiles a MATLAB application containing a Simulink® simulation
into a standalone application. For more information, see “Create and Deploy a Script with Simulink
Compiler” (Simulink Compiler).

Examples
Create a standalone application

mcc -m magic.m

Create a standalone application that does not open the Command shell (Windows only)

mcc -e magic.m

9 Functions

9-22

Create a standalone application with a system-level file version number (Windows only)

Create a standalone application in Windows with version number 3.4.1.5.

mcc -W 'main:mymagic,version=3.4.1.5' -T link:exe mymagic.m

Create an Excel add-in

mcc -W 'excel:myAddin,myClass,1.0' -T link:lib magic.m

Create an Excel add-in with a system-level file version number (Windows only)

Create an Excel add-in in Windows with version number 5.2.1.7.
mcc -W 'excel:myAddin,myClass,version=5.2.1.7' -T link:lib -b mymagic.m

Create an Excel add-in for MATLAB Production Server

mcc -W 'mpsxl:myDeployableArchvie,myExcelClass,version=1.0' -T link:lib mymagic.m

Create a Standalone Application for a Simulink Simulation (Requires Simulink Compiler)

To create a standalone application for a Simulink simulation:

Create a Simulink model using Simulink. This example uses the model sldemo_suspn_3dof that
ships with Simulink.

Create a MATLAB application that uses APIs from Simulink Compiler to simulate the model. For more
information, see “Deploy Simulations with Tunable Parameters” (Simulink Compiler).
function deployParameterTuning(outputFile, mbVariable)

 if ischar(mbVariable) || isstring(mbVariable)
 mbVariable = str2double(mbVariable);
 end

 if isnan(mbVariable) || ~isa(mbVariable, 'double') || ~isscalar(mbVariable)
 disp('mb must be a double scalar or a string or char that can be converted to a double scalar');
 end

 in = Simulink.SimulationInput('sldemo_suspn_3dof');
 in = in.setVariable('Mb', mbVariable);
 in = simulink.compiler.configureForDeployment(in);
 out = sim(in);

 save(outputFile, 'out');

end

Use mcc to create a standalone application from the MATLAB application.

mcc -m deployParameterTuning.m

Input Arguments
mfilename — File to be compiled
file name

File to be compiled, specified as a character vector or string scalar.

mfilename1 mfilename2...mfilenameN — Files to be compiled
list of file names

 mcc

9-23

One or more files to be compiled, specified as a space-separated list of file names.

options — Options for customizing the output
-a | -b | -B | -c | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -r | -R | -S | -T | -u | -U | -v | -w | -W |
-X | -Y

Options for customizing the output, specified as a list of character vectors or string scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added. Multiple -a
options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path, so
specifying the full path name is optional. These files are not passed to mbuild, so you can include
files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are added
recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the deployable
archive. The folder subtree in testdir is preserved in the deployable archive.

If the filename includes a wildcard pattern, only the files in the folder that match the pattern are
added to the deployable archive and subfolders of the given path are not processed recursively.
For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and subfolders under ./
testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the deployable archive
and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at the time of
compilation, a path entry is added to the application's run-time path so that they appear on the
path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is preserved, with
some modifications, but relative to a subdirectory of the runtime cache directory, not to the user's
local folder. The cache directory is created from the deployable archive the first time the
application is executed. You can use the isdeployed function to determine whether the
application is being run in deployed mode, and adjust the path accordingly. The -a option also
creates a .auth file for authorization purposes.

9 Functions

9-24

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other files from
that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications work without
any need to change the classpath as long as the Java class is not a member of a package. The
same applies for JAR files. However, if the class being added is a member of a package, the
MATLAB code needs to make an appropriate call to javaaddpath to update the classpath with
the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function interface to
the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic
code, this code allows the MATLAB function to be seen as a cell formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle can include
replacement parameters for compiler options that accept names and version numbers. See “Using
Bundles to Build MATLAB Code” (MATLAB Compiler SDK).

• -c

When used in conjunction with the -l option, suppresses compiling and linking of the generated C
wrapper code. The -c option cannot be used independently of the -l option.

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder. The specified folder must already exist.
• -e

Use -e in place of the -m option to generate a standalone Windows application that does not open
a Windows command prompt on execution. -e is equivalent to -W WinMain -T link:exe.

This option works only on Windows operating systems.
• -f

Override the default options file with the specified options file. It specifically applies to the C/C++
shared libraries, COM, and Excel targets. Use

 mcc

9-25

-f filename

to specify filename as the options file when calling mbuild. This option lets you use different
ANSI compilers for different invocations of the compiler. This option is a direct pass-through to
mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler SDK.
It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The
debug option lets you backtrace up to the point where you can identify if the failure occurred in
the initialization of MATLAB Runtime, the function call, or the termination routine. This option
does not let you debug your MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option appends the folder to the end
of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files, followed by
directory2. This option is important for standalone compilation where the MATLAB path is not
available.

If used in conjunction with the -N option, the -I option adds the folder to the compilation path in
the same position where it appeared in the MATLAB path rather than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to execute
successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for defining compile-
time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.

To pass options such as /bigobj, delineate the string according to your platform.

Platform Syntax
MATLAB -M 'COMPFLAGS=$COMPFLAGS /bigobj'

Windows command prompt -M COMPFLAGS="$COMPFLAGS /bigobj"

9 Functions

9-26

Platform Syntax
Linux and macOS command line -M CFLAGS='$CFLAGS /bigobj'

• -n

The -n option automatically identifies numeric command line inputs and treats them as MATLAB
doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is subject to
change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at compile time.
Including -N on the command line lets you replace folders from the original path, while retaining
the relative ordering of the included folders. All subfolders of the included folders that appear on
the original path are also included. In addition, the -N option retains all folders that you included
on the path that are not under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is placed at the
head of the compilation path. Use the –p option to conditionally include folders and their
subfolders; if they are present in the MATLAB path, they appear in the compilation path in the
same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-dependent
extension is added to the specified name (for example, .exe for Windows standalone
applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under matlabroot
\toolbox to the compilation MATLAB path. The files are added in the same order in which they
appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and all its
subfolders that appear on the original path are added to the compilation path in the same
order.

• If a folder is included with -p that is not on the original MATLAB path, that folder is ignored.
(You can use -I to force its inclusion.)

 mcc

9-27

• -r

Embed resource icon in binary. The syntax is as follows:

-r 'path/to/my_icon.ico'

• -R

Provide MATLAB Runtime options.

Note This option is relevant only when building standalone applications using MATLAB Compiler.

The syntax is as follows:

-R option

Option Description Target
'-
logfile,
filename
'

Specify a log file name. Option must be in
single quotes.

MATLAB Compiler

-
nodispla
y

Suppress the MATLAB nodisplay run-time
warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler
-
startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler Standalone
Applications

-
complete
msg

Customizable user message displayed when
initialization is complete.

MATLAB Compiler Standalone
Applications

-
singleCo
mpThread

Limit MATLAB to a single computational
thread.

MATLAB Compiler

Caution When running on macOS, if you use -nodisplay as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must occur before
calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK, mcc still
compiles without errors and generates the results. But the -R option doesn't apply to these
libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets its own
MATLAB Runtime context. The context includes a global MATLAB workspace for variables, such
as the path and a base workspace for each function in the class. If multiple instances of a class are
created, each instance gets an independent context. This ensures that changes made to the global
or base workspace in one instance of the class does not affect other instances of the same class.

9 Functions

9-28

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple instances of
a class are created, they use the context created by the first instance which saves startup time and
some resources. However, any changes made to the global workspace or the base workspace by
one instance impacts all class instances. For example, if instance1 creates a global variable A in
a singleton MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....
Excel add-in Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
.NET assembly Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
COM component • Using the Library Compiler app, click Settings

and add -S to the Additional parameters
passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

Target Description
compile:exe Generate a C/C++ wrapper file, and compile

C/C++ files to an object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a shared library or DLL.

link:exe Same as compile:exe and also link object
files into a standalone application.

link:lib Same as compile:lib and also link object
files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The argument
applies only to the generic COM component and Microsoft Excel add-in targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created

 mcc

9-29

• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List the compile-time warnings that have abbreviated

identifiers, together with their status.
-w enable Enable all compile-time warnings.
-w disable[:<string>] Disable specific compile-time warnings associated with

<string>. Omit the optional <string> to apply the
disable action to all compile-time warnings.

-w enable[:<string>] Enable specific compile-time warnings associated with
<string>. Omit the optional <string> to apply the
enable action to all compile-time warnings.

-w error[:<string>] Treat specific compile-time and runtime warnings
associated with <string> as an error. Omit the optional
<string> to apply the error action to all compile-time
and runtime warnings.

-w off[:<string>] Turn off warnings for specific error messages defined by
<string>. Omit the optional <string> to apply the off
action to all runtime warnings.

-w on[:<string>] Turn on runtime warnings associated with <string>.
Omit the optional <string> to apply the on action to all
runtime warnings. This option is enabled by default.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using isdeployed) in
startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
 warning on
end

You can also specify multiple -w options.

For example, if you want to disable all warnings except repeated_file, you write:

-w disable -w enable:repeated_file

9 Functions

9-30

When you specify multiple -w options, they are processed from left to right.
• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files generated by the
compiler. You provide a list of functions, and the compiler generates the wrapper functions and
any appropriate global variable definitions.

Target Syntax
Standalone Application -W 'main:appName,version=version'
Standalone Application (no Windows console) -W

'WinMain:appName,version=version'
Excel Add-In -W

'excel:addinName,className,version=
version'

Hadoop MapReduce Application -W
'hadoop:archiveName,CONFIG:configFi
le'

Spark Application -W 'spark:appName,version'

Note Replace single quotes with double when executing the command from a Windows Command
Prompt.

• -X

Use -X to ignore data files read by common MATLAB file I/O functions during dependency
analysis. For more information, see “Dependency Analysis Using MATLAB Compiler”. For
examples on how to use the -X option, see %#exclude.

• -Y

Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

Tips
• On Windows, you can generate a system-level file version number for your target file by appending

version=version_number to the target generating mcc syntax. For an example, see “Create a
standalone application with a system-level file version number (Windows only)”.

 mcc

9-31

version_number — Specifies the version of the target file as major.minor.bug.build in the
file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number, by default, to 1.0.0.0.

• major — Specifies the major version number. If you do not specify a version number, mcc sets
major to 1.

• minor — Specifies the minor version number. If you do not specify a version number, mcc sets
minor to 0.

• bug — Specifies the bug fix maintenance release number. If you do not specify a version
number, mcc sets bug to 0.

• build — Specifies build number. If you do not specify a version number, mcc sets build to 0.

This functionality is supported for standalone applications and Excel add-ins in MATLAB Compiler.
For supported targets in MATLAB Compiler SDK, see the Tips section in mcc.

See Also

Introduced before R2006a

9 Functions

9-32

Utility Library for Microsoft COM
Components

• “Reference Utility Classes” on page 10-2
• “Class MWUtil” on page 10-3
• “Class MWFlags” on page 10-10
• “Class MWStruct” on page 10-15
• “Class MWField” on page 10-20
• “Class MWComplex” on page 10-21
• “Class MWSparse” on page 10-23
• “Class MWArg” on page 10-26
• “Enum mwArrayFormat” on page 10-27
• “Enum mwDataType” on page 10-28
• “Enum mwDateFormat” on page 10-29

10

Reference Utility Classes
This section describes the MWComUtil library. This library is freely distributable and includes several
functions used in array processing, as well as type definitions used in data conversion. This library is
contained in the file mwcomutil.dll. It must be registered once on each machine that uses
Microsoft COM components created by MATLAB Compiler or MATLAB Compiler SDK.

Register the MWComUtil library at the DOS command prompt with the command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes and three enumerated types. Before using these types,
you must make explicit references to the MWComUtil type libraries in the Microsoft Visual Basic IDE.

Note You must specify the full path of the component when calling mwregsvr, or make the call from
the folder in which the component resides.

10 Utility Library for Microsoft COM Components

10-2

Class MWUtil
The MWUtil class contains a set of static utility methods used in array processing and application
initialization. This class is implemented internally as a singleton (only one global instance of this class
per instance of Microsoft Excel). It is most efficient to declare one variable of this type in global scope
within each module that uses it. The methods of MWUtil are:

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Microsoft Excel.

Parameters

Argument Type Description
pApp Object A valid reference to the current

Excel application

Return Value

None.

Remarks

This function must be called once for each session of Excel that uses COM components created by
MATLAB Compiler. An error is generated if a method call is made to a member class of any MATLAB
Compiler SDK COM component, and the library has not been initialized.

Example

This Visual Basic sample initializes the MWComUtil library with the current instance of Excel. A
global variable of type Object named MCLUtil holds an instance of the MWUtil class, and another
global variable of type Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the MWComUtil class and calls
the MWInitApplication method with an argument of Application. Once this function succeeds,
all subsequent calls exit without recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
 If Not bModuleInitialized Then
 On Error GoTo Handle_Error
 If MCLUtil Is Nothing Then
 Set MCLUtil = CreateObject("MWComUtil.MWUtil")
 End If
 Call MCLUtil.MWInitApplication(Application)
 bModuleInitialized = True
 Exit Sub
Handle_Error:
 bModuleInitialized = False
 End If
End Sub

 Class MWUtil

10-3

Note If you are developing concurrently with multiple versions of MATLAB and MWComUtil.dll, for
example, using this syntax:

Set MCLUtil = CreateObject("MWComUtil.MWUtil")

requires you to recompile your COM modules every time you upgrade. To avoid this, make your call to
the MWUtil module version-specific, for example:

Set MCLUtil = CreateObject("MWComUtil.MWUtilx.x")

where x.x is the specific version number.

Sub MWInitApplicationWithMCROptions(pApp As Object,
[mcrOptionList])
Start MATLAB Runtime with MATLAB Runtime options. Similar to mclInitializeApplication
(MATLAB Compiler SDK).

Parameters

Argument Type Description
pApp Object A valid reference only when

called from an Excel application

Non Excel COM clients pass in
Empty.

Return Value

None.

Remarks

Call this function to pass in MATLAB Runtime options (nojvm, logfile, etc.). Call this function once
per process.

Example

This Visual Basic sample initializes the MWComUtil library with the current instance of Excel. A
global variable of type Object named MCLUtil holds an instance of the MWUtil class, and another
global variable of type Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the MWComUtil class and calls
the MWInitApplicationWithMCROptions method with an argument of Application and a string
array that contains the options. Once this function succeeds, all subsequent calls exit without
recreating the object. When this function successfully executes, the MATLAB Runtime starts up with
no JVM™ and a logfile named logfile.txt.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
 If Not bModuleInitialized Then
 On Error GoTo Handle_Error
 If MCLUtil Is Nothing Then

10 Utility Library for Microsoft COM Components

10-4

 Set MCLUtil = CreateObject("MWComUtil.MWUtil")
 End If
 Dim mcrOptions(1 To 3) as String
 mcrOptions(1) = "-nojvm"
 mcrOptions(2) = "-logfile"
 mcrOptions(3) = "logfile.txt"
 Call MCLUtil.MWInitApplicationWithMCROptions(Application, mcrOptions)
 bModuleInitialized = True
 Exit Sub
Handle_Error:
 bModuleInitialized = False
 End If
End Sub

Note If you are not using Excel, pass in Nothing instead of Application to
MWInitApplicationWithMCROptions.

Function IsMCRJVMEnabled() As Boolean
Returns true if MATLAB Runtime is launched with JVM; otherwise returns false.

Parameters

None.

Return Value

Boolean

Function IsMCRInitialized() As Boolean
Returns true if MATLAB Runtime is initialized; otherwise returns false

Parameters

None.

Return Value

Boolean

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant array. This function is
typically used for creating a varargin cell from a list of separate inputs. Each input in the list is
added to the array only if it is not empty or missing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters

Argument Type Description
pVarArg Variant Receives the resulting array

 Class MWUtil

10-5

Argument Type Description
[Var0], [Var1], ... Variant Optional list of Variants to

pack into the array. From 0 to
32 arguments can be passed.

Return Value

None.

Remarks

This function always frees the contents of pVarArg before processing the list.

Example

This example uses MWPack in a formula function to produce a varargin cell to pass as an input
parameter to a method compiled from a MATLAB function with the signature

function y = mysum(varargin)
 y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this function is a method of a
class named myclass that is included in a component named mycomponent with a version of 1.0.
The Visual Basic function allows up to 10 inputs, and returns the result y. If an error occurs, the
function returns the error message. This function assumes that MWInitApplication has been
previously called.

Function mysum(Optional V0 As Variant, _
 Optional V1 As Variant, _
 Optional V2 As Variant, _
 Optional V3 As Variant, _
 Optional V4 As Variant, _
 Optional V5 As Variant, _
 Optional V6 As Variant, _
 Optional V7 As Variant, _
 Optional V8 As Variant, _
 Optional V9 As Variant) As Variant
Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

 On Error Goto Handle_Error
 Set aClass = CreateObject("mycomponent.myclass.1_0")
 Set aUtil = CreateObject("MWComUtil.MWUtil")
 Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
 Call aClass.mysum(1, y, varargin)
 mysum = y
 Exit Function
Handle_Error:
 mysum = Err.Description
End Function

10 Utility Library for Microsoft COM Components

10-6

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
= False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This function provides the
reverse functionality of MWPack and is typically used to process a varargout cell into individual
Variants.

Parameters

Argument Type Description
VarArg Variant Input array of Variants to be

processed
nStartAt Long Optional starting index (zero-

based) in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize flag. If this
flag is True, any Excel range
output arguments are resized to
fit the dimensions of the
Variant to be copied. The
resizing process is applied
relative to the upper left corner
of the supplied range. Default =
False.

[pVar0],[pVar1], ... Variant Optional list of Variants to
receive the array items
contained in VarArg. From 0 to
32 arguments can be passed.

Return Value

None.

Remarks

This function can process a Variant array in one single call or through multiple calls using the
nStartAt parameter.

Example

This example uses MWUnpack to process a varargout cell into several Excel ranges, while auto-
resizing each range. The varargout parameter is supplied from a method that has been compiled
from the MATLAB function.

function varargout = randvectors
 for i=1:nargout
 varargout{i} = rand(i,1);
 end

This function produces a sequence of nargout random column vectors, with the length of the ith
vector equal to i. Assume that this function is included in a class named myclass that is included in a
component named mycomponent with a version of 1.0. The Visual Basic subroutine takes no

 Class MWUtil

10-7

arguments and places the results into Excel columns starting at A1, B1, C1, and D1. If an error
occurs, a message box displays the error text. This function assumes that MWInitApplication has
been previously called.

Sub GenVectors()
 Dim aClass As Object
 Dim aUtil As Object
 Dim v As Variant
 Dim R1 As Range
 Dim R2 As Range
 Dim R3 As Range
 Dim R4 As Range

 On Error GoTo Handle_Error
 Set aClass = CreateObject("mycomponent.myclass.1_0")
 Set aUtil = CreateObject("MWComUtil.MWUtil")
 Set R1 = Range("A1")
 Set R2 = Range("B1")
 Set R3 = Range("C1")
 Set R4 = Range("D1")
 Call aClass.randvectors(4, v)
 Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

Parameters

Argument Type Description
pVar Variant Variant to be converted

Return Value

None.

Remarks

MATLAB handles dates as double-precision floating-point numbers with 0.0 representing 0/0/00
00:00:00. By default, numeric dates that are output parameters from compiled MATLAB functions are
passed as Doubles that need to be decremented by the COM date bias as well as coerced to COM
dates. The MWDate2VariantDate method performs this transformation and additionally converts
dates in character vector form to COM date types.

Example

This example uses MWDate2VariantDate to process numeric dates returned from a method
compiled from the following MATLAB function.

function x = getdates(n, inc)
 y = now;

10 Utility Library for Microsoft COM Components

10-8

 for i=1:n
 x(i,1) = y + (i-1)*inc;
 end

This function produces an n-length column vector of numeric values representing dates starting from
the current date and time with each element incremented by inc days. Assume that this function is
included in a class named myclass that is included in a component named mycomponent with a
version of 1.0. The subroutine takes an Excel range and a Double as inputs and places the generated
dates into the supplied range. If an error occurs, a message box displays the error text. This function
assumes that MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
 Dim aClass As Object
 Dim aUtil As Object

 On Error GoTo Handle_Error
 Set aClass = CreateObject("mycomponent.myclass.1_0")
 Set aUtil = CreateObject("MWComUtil.MWUtil")
 Call aClass.getdates(1, R, R.Rows.Count, inc)
 Call aUtil.MWDate2VariantDate(R)
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

 Class MWUtil

10-9

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion flags (See “Rules for Data
Conversion Between .NET and MATLAB” (MATLAB Compiler SDK) for more information on
conversion between MATLAB and COM Automation types.) All MATLAB Compiler SDK COM
components contain a reference to an MWFlags object that can modify data conversion rules at the
object level. This class contains these properties and method:

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix or a cell array) and the
application of these rules to nested arrays. The MWArrayFormatFlags class is a noncreatable class
accessed through an MWFlags class instance. This class contains six properties:

• “Property InputArrayFormat As mwArrayFormat” on page 10-10
• “Property InputArrayIndFlag As Long” on page 10-10
• “Property OutputArrayFormat As mwArrayFormat” on page 10-11
• “Property OutputArrayIndFlag As Long” on page 10-11
• “Property AutoResizeOutput As Boolean” on page 10-11
• “Property TransposeOutput As Boolean” on page 10-11

Property InputArrayFormat As mwArrayFormat

This property of type mwArrayFormat controls the formatting of arrays passed as input parameters
to MATLAB Compiler SDK class methods. The default value is mwArrayFormatMatrix. The
behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Input Arrays
Value Behavior
mwArrayFormatAsIs Converts arrays according to the default

conversion rules listed in “Rules for Data
Conversion Between .NET and MATLAB”
(MATLAB Compiler SDK).

mwArrayFormatCell Coerces all arrays into cell arrays. Input scalar or
numeric array arguments are converted to cell
arrays with each cell containing a scalar value for
the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices. When an input
argument is encountered that is an array of
Variants (the default behavior is to convert it to
a cell array), the data converter converts this
array to a matrix if each Variant is single
valued, and all elements are homogeneous and of
a numeric type. If this conversion is not possible,
creates a cell array.

Property InputArrayIndFlag As Long

This property governs the level at which to apply the rule set by the InputArrayFormat property
for nested arrays (an array of Variants is passed and each element of the array is an array itself). It

10 Utility Library for Microsoft COM Components

10-10

is not necessary to modify this flag for varargin parameters. The data conversion code
automatically increments the value of this flag by 1 for varargin cells, thus applying the
InputArrayFormat flag to each cell of a varargin parameter. The default value is 0.

Property OutputArrayFormat As mwArrayFormat

This property of type mwArrayFormat controls the formatting of arrays passed as output parameters
to class methods. The default value is mwArrayFormatAsIs. The behaviors indicated by this flag are
listed in the next table.

Array Formatting Rules for Output Arrays

Value Behavior
mwArrayFormatAsIs Converts arrays according to the default

conversion rules listed in “Rules for Data
Conversion Between .NET and MATLAB”
(MATLAB Compiler SDK).

mwArrayFormatMatrix Coerces all arrays into matrices. When an output
cell array argument is encountered (the default
behavior converts it to an array of Variants),
the data converter converts this array to a
Variant that contains a simple numeric array if
each cell is single valued, and all elements are
homogeneous and of a numeric type. If this
conversion is not possible, an array of Variants
is created.

mwArrayFormatCell Coerces all output arrays into arrays of
Variants. Output scalar or numeric array
arguments are converted to arrays of Variants,
each Variant containing a scalar value for the
respective index.

Property OutputArrayIndFlag As Long

This property is similar to the InputArrayIndFalg property, as it governs the level at which to
apply the rule set by the OutputArrayFormat property for nested arrays. As with the input case,
this flag is automatically incremented by 1 for a varargout parameter. The default value of this flag
is 0.

Property AutoResizeOutput As Boolean

This flag applies to Excel ranges only. When the target output from a method call is a range of cells in
an Excel worksheet, and the output array size and shape is not known at the time of the call, setting
this flag to True instructs the data conversion code to resize each Excel range to fit the output array.
Resizing is applied relative to the upper left corner of each supplied range. The default value for this
flag is False.

Property TransposeOutput As Boolean

Setting this flag to True transposes the output arguments. This flag is useful when processing an
output parameter from a method call on a COM component, where the MATLAB function returns
outputs as row vectors, and you desire to place the data into columns. The default value for this flag
is False.

 Class MWFlags

10-11

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are processed when type
coercion is needed. The MWDataConversionFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page 10-12
• “PropertyDateBias As Long” on page 10-12
• “Property InputDateFormat As mwDateFormat” on page 10-13
• “PropertyOutputAsDate As Boolean” on page 10-13
• “ReplaceMissing As mwReplaceMissingData” on page 10-13

Property CoerceNumericToType As mwDataType

This property converts all numeric input arguments to one specific MATLAB type. This flag is useful is
when variables maintained within the Visual Basic code are different types, e.g., Long, Integer, etc.,
and all variables passed to the compiled MATLAB code must be doubles. The default value for this
property is mwTypeDefault, which uses the default rules in “Rules for Data Conversion
Between .NET and MATLAB” (MATLAB Compiler SDK).

PropertyDateBias As Long

This property sets the date bias for performing COM to MATLAB numeric date conversions. The
default value of this property is 693960, representing the difference between the COM Date type and
MATLAB numeric dates. This flag allows existing MATLAB code that already performs the increment
of numeric dates by 693960 to be used unchanged with COM components. To process dates with such
code, set this property to 0.

This example uses data conversion flags to reshape the output from a method compiled from a
MATLAB function that produces an output vector of unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)
 if p((k+1)/2)
 p(((k*k+1)/2):k:q) = 0;
 end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and n. Assume that this
function is included in a class named myclass that is included in a component named mycomponent
with a version of 1.0. The subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function produces a row vector,
although you want the output in column format. It also produces an unknown number of outputs, and
you do not want to truncate any output. To handle these issues, set the TransposeOutput flag and
the AutoResizeOutput flag to True. In previous examples, the Visual Basic CreateObject
function creates the necessary classes. This example uses an explicit type declaration for the aClass
variable. As with previous examples, this function assumes that MWInitApplication has been
previously called.

10 Utility Library for Microsoft COM Components

10-12

Sub GenPrimes(R As Range, n As Double)
 Dim aClass As mycomponent.myclass

 On Error GoTo Handle_Error
 Set aClass = New mycomponent.myclass
 aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
 aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
 Call aClass.myprimes(1, R, n)
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Property InputDateFormat As mwDateFormat

This property converts dates passed as input parameters to method calls on MATLAB Compiler SDK
classes. The default value is mwDateFormatNumeric. The behaviors indicated by this flag are shown
in the following table.

Conversion Rules for Input Dates

Value Behavior
mwDateFormatNumeric Convert dates to numeric values as indicated by

the rule listed in “Rules for Data Conversion
Between .NET and MATLAB” (MATLAB Compiler
SDK).

mwDateFormatString Convert input dates to strings.

PropertyOutputAsDate As Boolean

This property processes an output argument as a date. By default, numeric dates that are output
parameters from compiled MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to True to convert all
output values of type Double.

ReplaceMissing As mwReplaceMissingData

This property is an enumeration and can have two possible values: mwReplaceNaN and
mwReplaceZero.

To treat empty cells referenced by input parameters as zeros, set the value to mwReplaceZero. To
treat empty cells referenced by input parameters as NaNs (Not a Number), set the value to
mwReplaceNaN.

By default, the value is mwReplaceZero.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

 Class MWFlags

10-13

Parameters

Argument Type Description
ppFlags MWFlags Reference to an uninitialized

MWFlags object that receives
the copy

Return Value

None

Remarks

Clone allocates a new MWFlags object and creates a deep copy of the object's contents. Call this
function when a separate object is required instead of a shared copy of an existing object reference.

10 Utility Library for Microsoft COM Components

10-14

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled class method. This class
contains seven properties/methods:

Sub Initialize([varDims], [varFieldNames])
This method allocates a structure array with a specified number and size of dimensions and a
specified list of field names.

Parameters

Argument Type Description
varDims Variant Optional array of dimensions
varFieldNames Variant Optional array of field names

Return Value

None.

Remarks

When created, an MWStruct object has a dimensionality of 1-by-1 and no fields. The Initialize
method dimensions the array and adds a set of named fields to each element. Each time you call
Initialize on the same object, it is redimensioned. If you do not supply the varDims argument,
the existing number and size of the array's dimensions unchanged. If you do not supply the
varFieldNames argument, the existing list of fields is not changed. Calling Initialize with no
arguments leaves the array unchanged.

Example

The following Visual Basic code illustrates use of the Initialize method to dimension struct arrays.

Sub foo ()
 Dim x As MWStruct
 Dim y As MWStruct

 On Error Goto Handle_Error
 'Create 1X1 struct arrays with no fields for x, and y
 Set x = new MWStruct
 Set y = new MWStruct

 'Initialize x to be 2X2 with fields "red", "green",
 ' and "blue"
 Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
 'Initialize y to be 1X5 with fields "name" and "age"
 Call y.Initialize(5, Array("name", "age"))

 'Re-dimension x to be 3X3 with the same field names
 Call x.Initialize(Array(3,3))

 'Add a new field to y
 Call y.Initialize(, Array("name", "age", "salary"))

 Class MWStruct

10-15

 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property is used to set/get the
value of a field at a particular index in the structure array.

Parameters

Argument Type Description
i0,i1, ..., i31 Variant Optional index arguments.

Between 0 and 32 index
arguments can be entered. To
reference an element of the
array, specify all indexes as well
as the field name.

Remarks

When accessing a named field through this property, you must supply all dimensions of the requested
field as well as the field name. This property always returns a single field value, and generates a bad
index error if you provide an invalid or incomplete index list. Index arguments have four basic
formats:

• Field name only

This format may be used only in the case of a 1-by-1 structure array and returns the named field's
value. For example:

x("red") = 0.2
x("green") = 0.4
x("blue") = 0.6

In this example, the name of the Item property was neglected. This is possible since the Item
property is the default property of the MWStruct class. In this case the two statements are
equivalent:

x.Item("red") = 0.2
x("red") = 0.2

• Single index and field name

This format accesses array elements through a single subscripting notation. A single numeric index n
followed by the field name returns the named field on the nth array element, navigating the array
linearly in column-major order. For example, consider a 2-by-2 array of structures with fields "red",
"green" , and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

• All indices and field name

10 Utility Library for Microsoft COM Components

10-16

This format accesses an array element of an multidimensional array by specifying n indices. These
statements access all four of the elements of the array in the previous example:

For I From 1 To 2
 For J From 1 To 2
 r(I, J) = x(I, J, "red")
 g(I, J) = x(I, J, "green")
 b(I, J) = x(I, J, "blue")
 Next
Next

• Array of indices and field name

This format accesses an array element by passing an array of indices and a field name. The next
example rewrites the previous example using an index array:

Dim Index(1 To 2) As Integer

For I From 1 To 2
 Index(1) = I
 For J From 1 To 2
 Index(2) = J
 r(I, J) = x(Index, "red")
 g(I, J) = x(Index, "green")
 b(I, J) = x(Index, "blue")
 Next
Next

With these four formats, the Item property provides a very flexible indexing mechanism for structure
arrays. Also note:

• You can combine the last two indexing formats. Several index arguments supplied in either scalar
or array format are concatenated to form one index set. The combining stops when the number of
dimensions has been reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the structure array.

 Class MWStruct

10-17

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions in the struct array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that contains the size of each
dimension of the struct array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length NumberOfFields that contains the
field names of the elements of the structure array.

Example

The next Visual Basic code sample illustrates how to access a two-dimensional structure array's fields
when the field names and dimension sizes are not known in advance.

Sub foo ()
 Dim x As MWStruct
 Dim Dims as Variant
 Dim FieldNames As Variant

 On Error Goto Handle_Error
 '
 '... Call a method that returns an MWStruct in x
 '
 Dims = x.Dims
 FieldNames = x.FieldNames
 For I From 1 To Dims(1)
 For J From 1 To Dims(2)
 For K From 1 To x.NumberOfFields
 y = x(I,J,FieldNames(K))
 ' ... Do something with y
 Next
 Next
 Next
Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

10 Utility Library for Microsoft COM Components

10-18

Parameters

Argument Type Description
ppStruct MWStruct Reference to an uninitialized

MWStruct object to receive the
copy

Return Value

None

Remarks

Clone allocates a new MWStruct object and creates a deep copy of the object's contents. Call this
function when a separate object is required instead of a shared copy of an existing object reference.

Example

The following Visual Basic example illustrates the difference between assignment and Clone for
MWStruct objects.

Sub foo ()
 Dim x1 As MWStruct
 Dim x2 As MWStruct
 Dim x3 As MWStruct

 On Error Goto Handle_Error
 Set x1 = new MWStruct
 x1("name") = "John Smith"
 x1("age") = 35

 'Set reference of x1 to x2
 Set x2 = x1
 'Create new object for x3 and copy contents of x1 into it
 Call x1.Clone(x3)
 'x2's "age" field is
 'also modified 'x3's "age" field unchanged
 x1("age") = 50
 .
 .
 .
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

 Class MWStruct

10-19

Class MWField
The MWField class holds a single field reference in an MWStruct object. This class is noncreatable
and contains four properties/methods:

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field's value (read/write). The Value property is the default property of the MWField class.
The value of a field can be any type that is coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array formatting and data
conversion flags for a particular field. Each field in a structure has its own MWFlags property. This
property overrides the value of any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters

Argument Type Description
ppField MWField Reference to an uninitialized

MWField object to receive the
copy

Return Value

None.

Remarks

Clone allocates a new MWField object and creates a deep copy of the object's contents. Call this
function when a separate object is required instead of a shared copy of an existing object reference.

10 Utility Library for Microsoft COM Components

10-20

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from a compiled class
method. This class contains four properties/methods:

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the default property of the
MWComplex class. The value of this property can be any type coercible to a Variant, as well as
object types, with the restriction that the underlying array must resolve to a numeric matrix (no cell
data allowed). Valid Visual Basic numeric types for complex arrays include Byte, Integer, Long,
Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property is optional and can be
Empty for a pure real array. If the Imag property is not empty and the size and type of the underlying
array do not match the size and type of the Real property's array, an error results when the object is
used in a method call.

Example

The following Visual Basic code creates a complex array with the following entries:

 x = [1+i 1+2i
 2+i 2+2i]
Sub foo()
 Dim x As MWComplex
 Dim rval(1 To 2, 1 To 2) As Double
 Dim ival(1 To 2, 1 To 2) As Double

 On Error Goto Handle_Error
 For I = 1 To 2
 For J = 1 To 2
 rval(I,J) = I
 ival(I,J) = J
 Next
 Next
 Set x = new MWComplex
 x.Real = rval
 x.Imag = ival
 .
 .
 .
 Exit Sub
Handle_Error:
 MsgBox(Err.Description)
End Sub

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array formatting and data
conversion flags for a particular complex array. Each MWComplex object has its own MWFlags
property. This property overrides the value of any flags set on the object whose methods are called.

 Class MWComplex

10-21

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters

Argument Type Description
ppComplex MWComplex Reference to an uninitialized

MWComplex object to receive
the copy

Return Value

None

Remarks

Clone allocates a new MWComplex object and creates a deep copy of the object's contents. Call this
function when a separate object is required instead of a shared copy of an existing object reference.

10 Utility Library for Microsoft COM Components

10-22

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array into or from a
compiled class method. This class has seven properties/methods:

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be nonnegative. If the value is
zero, the row index is taken from the maximum of the values in the RowIndex array.

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be nonnegative. If the
value is zero, the row index is taken from the maximum of the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The value of this property can be
any type coercible to a Variant, as well as object types, with the restriction that the underlying
array must resolve to or be coercible to a numeric matrix of type Long. If the value of NumRows is
nonzero and any row index is greater than NumRows, a bad-index error occurs. An error also results if
the number of elements in the RowIndex array does not match the number of elements in the Array
property's underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The value of this property
can be any type coercible to a Variant, as well as object types, with the restriction that the
underlying array must resolve to or be coercible to a numeric matrix of type Long. If the value of
NumColumns is nonzero and any column index is greater than NumColumns, a bad-index error occurs.
An error also results if the number of elements in the ColumnIndex array does not match the
number of elements in the Array property's underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this property can be any type
coercible to a Variant, as well as object types, with the restriction that the underlying array must
resolve to or be coercible to a numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array formatting and data
conversion flags for a particular sparse array. Each MWSparse object has its own MWFlags property.
This property overrides the value of any flags set on the object whose methods are called.

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

 Class MWSparse

10-23

Parameters

Argument Type Description
ppSparse MWSparse Reference to an uninitialized

MWSparse object to receive the
copy

Return Value

None.

Remarks

Clone allocates a new MWSparse object and creates a deep copy of the object's contents. Call this
function when a separate object is required instead of a shared copy of an existing object reference.

Example

The following Visual Basic sample creates a 5-by-5 tridiagonal sparse array with the following entries:

X = [2 -1 0 0 0
 -1 2 -1 0 0
 0 -1 2 -1 0
 0 0 -1 2 -1
 0 0 0 -1 2]

Sub foo()
 Dim x As MWSparse
 Dim rows(1 To 13) As Long
 Dim cols(1 To 13) As Long
 Dim vals(1 To 13) As Double
 Dim I As Long, K As Long

 On Error GoTo Handle_Error
 K = 1
 For I = 1 To 4
 rows(K) = I
 cols(K) = I + 1
 vals(K) = -1
 K = K + 1
 rows(K) = I
 cols(K) = I
 vals(K) = 2
 K = K + 1
 rows(K) = I + 1
 cols(K) = I
 vals(K) = -1
 K = K + 1
 Next
 rows(K) = 5
 cols(K) = 5
 vals(K) = 2
 Set x = New MWSparse
 x.NumRows = 5
 x.NumColumns = 5
 x.RowIndex = rows

10 Utility Library for Microsoft COM Components

10-24

 x.ColumnIndex = cols
 x.Array = vals
 .
 .
 .
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

 Class MWSparse

10-25

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This class passes an
argument for which the data conversion flags are changed for that one argument. This class has three
properties/methods:

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be passed to a compiled
method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array formatting and data
conversion flags for a particular argument. Each MWArg object has its own MWFlags property. This
property overrides the value of any flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters

Argument Type Description
ppArg MWArg Reference to an uninitialized

MWArg object to receive the
copy

Return Value

None.

Remarks

Clone allocates a new MWArg object and creates a deep copy of the object's contents. Call this
function when a separate object is required instead of a shared copy of an existing object reference.

10 Utility Library for Microsoft COM Components

10-26

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array formatting rule for data
conversion.

mwArrayFormat Values

Constant Numeric Value Description
mwArrayFormatAsIs 0 Do not reformat the array.
mwArrayFormatMatrix 1 Format the array as a matrix.
mwArrayFormatCell 2 Format the array as a cell array.

 Enum mwArrayFormat

10-27

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type
mwTypeDefault 0 Not applicable
mwTypeLogical 3 logical
mwTypeChar 4 char
mwTypeDouble 6 double
mwTypeSingle 7 single
mwTypeInt8 8 int8
mwTypeUint8 9 uint8
mwTypeInt16 10 int16
mwTypeUint16 11 uint16
mwTypeInt32 12 int32
mwTypeUint32 13 uint32

10 Utility Library for Microsoft COM Components

10-28

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting rule for dates.

mwDateFormat Values

Constant Numeric Value Description
mwDateFormatNumeric 0 Format dates as numeric values
mwDateFormatString 1 Format dates as strings

 Enum mwDateFormat

10-29

Apps

11

Library Compiler
Package MATLAB programs for deployment as shared libraries and components

Description
The Library Compiler app packages MATLAB functions to include MATLAB functionality in
applications written in other languages.

Open the Library Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter libraryCompiler.

11 Apps

11-2

Examples
• “Create Excel Add-In from MATLAB” on page 2-7
• “Create a C Shared Library with MATLAB Code” (MATLAB Compiler SDK)
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)
• “Generate a .NET Assembly and Build a .NET Application” (MATLAB Compiler SDK)
• “Create a Generic COM Component with MATLAB Code” (MATLAB Compiler SDK)
• “Generate a Java Package and Build a Java Application” (MATLAB Compiler SDK)
• “Generate a Python Package and Build a Python Application” (MATLAB Compiler SDK)

Parameters
type — type of library generated
C Shared Library | C++ Shared Library | Excel Add-in | Generic COM Component | Java Package
| .NET Assembly | Python Package

Type of library to generate.

exported functions — functions to package
list of character vectors

Functions to package as a list of character vectors.

packaging options — method for installing the MATLAB Runtime with the compiled library
MATLAB Runtime downloaded from web (default) | MATLAB Runtime included in package

You can decide whether or not to include the MATLAB Runtime fallback for MATLAB Runtime
installer in the generated application by selecting one of the two options in the Packaging Options
section. Including the MATLAB Runtime installer in the package significantly increases the size of the
package.

Runtime downloaded from web — Generates an installer that downloads the MATLAB Runtime and
installs it along with the deployed MATLAB application.

Runtime included in package — Generates an installer that includes the MATLAB Runtime installer.

The first time you select this option, you are prompted to download the MATLAB Runtime installer or
obtain a CD if you do not have internet access.

files required for your library to run — files that must be included with library
list of files

Files that must be included with library as a list of files.

files installed for your end user — optional files installed with library
list of files

Optional files installed with library as a list of files.

 Library Compiler

11-3

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

end user files — folder where files for building a custom installer are stored
character vector

Folder where files for building a custom installer are stored are stored as a character vector.

packaged installers — folder where generated installers are stored
character vector

Folder where generated installers are stored as a character vector.

Library Information

library name — name of the installed library
character vector

Name of the installed library as a character vector.

The default value is the name of the first function listed in the Exported Functions field of the app.

version — version of the generated library
character vector

Version of the generated library as a character vector.

splash screen — image displayed on installer
image

Image displayed on installer as an image.

author name — name of the library author
character vector

Name of the library author as a character vector.

e-mail — e-mail address used to contact library support
character vector

E-mail address used to contact library support as a character vector.

summary — brief description of library
character vector

Brief description of library as a character vector.

11 Apps

11-4

description — detailed description of library
character vector

Detailed description of library as a character vector.

Additional Installer Options

default installation folder — folder where artifacts are installed
character vector

Folder where artifacts are installed as a character vector.

installation notes — notes about additional requirements for using artifacts
character vector

Notes about additional requirements for using artifacts as a character vector.

Programmatic Use
libraryCompiler

See Also
Topics
“Create Excel Add-In from MATLAB” on page 2-7
“Create a C Shared Library with MATLAB Code” (MATLAB Compiler SDK)
“Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB Compiler
SDK)
“Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB
Compiler SDK)
“Generate a .NET Assembly and Build a .NET Application” (MATLAB Compiler SDK)
“Create a Generic COM Component with MATLAB Code” (MATLAB Compiler SDK)
“Generate a Java Package and Build a Java Application” (MATLAB Compiler SDK)
“Generate a Python Package and Build a Python Application” (MATLAB Compiler SDK)

Introduced in R2013b

 Library Compiler

11-5

Data Conversion

A

Data Conversion Rules
This topic describes the data conversion rules for the MATLAB Compiler components. These
components are dual interface Microsoft COM objects that support data types compatible with
Automation.

Note Automation (formerly called OLE Automation) is a technology that allows software packages to
expose their unique features to scripting tools and other applications. Automation uses the
Component Object Model (COM), but may be implemented independently from other OLE features,
such as in-place activation.

When a method is invoked on a MATLAB Compiler component, the input parameters are converted to
the MATLAB internal array format and passed to the compiled MATLAB function. When the function
exits, the output parameters are converted from the MATLAB internal array format to
COM Automation types.

The COM client passes all input and output arguments in the compiled MATLAB functions as type
VARIANT. The COM VARIANT type is a union of several simple data types. A type VARIANT variable
can store a variable of any of the simple types, as well as arrays of any of these values.

The Win32 application program interface (API) provides many functions for creating and
manipulating VARIANTs in C/C++, and Visual Basic provides native language support for this type.

Note This discussion of data refers to both VARIANT and Variant data types. VARIANT is the C++
name and Variant is the corresponding data type in Visual Basic.

See the Visual Studio® documentation for definitions and API support for COM VARIANTs. VARIANT
variables are self describing and store their type code as an internal field of the structure.

The following table lists the VARIANT type codes supported by the MATLAB Compiler components.

A Data Conversion Rules

A-2

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type
Code
(Visual Basic)

Visual
BasicType

Definition

VT_EMPTY — vbEmpty — Uninitialized VARIANT
VT_I1 char — — Signed one-byte

character
VT_UI1 unsigned char vbByte Byte Unsigned one-byte

character
VT_I2 short vbInteger Integer Signed two-byte integer
VT_UI2 unsigned short — — Unsigned two-byte

integer
VT_I4 long vbLong Long Signed four-byte integer
VT_UI4 unsigned long — — Unsigned four-byte

integer
VT_R4 float vbSingle Single IEEE® four-byte floating-

point value
VT_R8 double vbDouble Double IEEE eight-byte floating-

point value
VT_CY CY+ vbCurrency Currency Currency value (64-bit

integer, scaled by 10,000)
VT_BSTR BSTR+ vbString String String value
VT_ERROR SCODE+ vbError — An HRESULT (signed four-

byte integer representing
a COM error code)

VT_DATE DATE+ vbDate Date Eight-byte floating point
value representing date
and time

VT_INT int — — Signed integer;
equivalent to type int

VT_UINT unsigned int — — Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal — 96-bit (12-byte) unsigned
integer, scaled by a
variable power of 10

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean value
(0xFFFF = True; 0x0000
= False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer to
an object

 Data Conversion Rules

A-3

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type
Code
(Visual Basic)

Visual
BasicType

Definition

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY — — — Bitwise combine
VT_ARRAY with any basic
type to declare as an
array

<anything>|VT_BYREF — — — Bitwise combine
VT_BYREF with any basic
type to declare as a
reference to a value

+ Denotes Windows-specific type. Not part of standard C/C++.

The following table lists the rules for converting from MATLAB to COM.

A Data Conversion Rules

A-4

MATLAB to COM VARIANT Conversion Rules

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

cell A 1-by-1 cell array converts
to a single VARIANT with a
type conforming to the
conversion rule for the
MATLAB data type of the
cell contents.

A multidimensional cell
array converts to a
VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of each array
member conforming to the
conversion rule for the
MATLAB data type of the
corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct array is
converted to an MWStruct
object. (See “Class
MWStruct” (MATLAB
Compiler SDK)) This object
is passed as a
VT_DISPATCH type.

char A 1-by-1 char matrix
converts to a VARIANT of
type VT_BSTR with string
length = 1.

A 1-by-L char matrix is
assumed to represent a
character vector of length L
in MATLAB. This case
converts to a VARIANT of
type VT_BSTR with a string
length = L. char matrices
of more than one row, or of
a higher dimensionality
convert to a VARIANT of
type VT_BSTR|VT_ARRAY.
Each string in the converted
array is of length 1 and
corresponds to each
character in the original
matrix.

Arrays of character vectors
are not supported as char
matrices. To pass an array
of character vectors, use a
cell array of 1-by-L char
matrices.

sparse VT_DISPATCH VT_DISPATCH A MATLAB sparse array is
converted to an MWSparse
object. (See “Class
MWSparse” (MATLAB
Compiler SDK)) This object
is passed as a
VT_DISPATCH type.

 Data Conversion Rules

A-5

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

double A real 1-by-1 double matrix
converts to a VARIANT of
type VT_R8. A complex 1-
by-1 double matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
double matrix converts to a
VARIANT of type VT_R8|
VT_ARRAY. A complex
multidimensional double
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

single A real 1-by-1 single matrix
converts to a VARIANT of
type VT_R4. A complex 1-
by-1 single matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
single matrix converts to a
VARIANT of type VT_R4|
VT_ARRAY. A complex
multidimensional single
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

int8 A real 1-by-1 int8 matrix
converts to a VARIANT of
type VT_I1. A complex 1-
by-1 int8 matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
int8 matrix converts to a
VARIANT of type VT_I1|
VT_ARRAY. A complex
multidimensional int8
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

uint8 A real 1-by-1 uint8 matrix
converts to a VARIANT of
type VT_UI1. A complex 1-
by-1 uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
uint8 matrix converts to a
VARIANT of type VT_UI1|
VT_ARRAY.A complex
multidimensional uint8
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

int16 A real 1-by-1 int16 matrix
converts to a VARIANT of
type VT_I2. A complex 1-
by-1 int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
int16 matrix converts to a
VARIANT of type VT_I2|
VT_ARRAY. A complex
multidimensional int16
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

A Data Conversion Rules

A-6

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

uint16 A real 1-by-1 uint16 matrix
converts to a VARIANT of
type VT_UI2. A complex 1-
by-1 uint16 matrix
converts to a VARIANT of
type VT_DISPATCH.

A real multidimensional
uint16 matrix converts to a
VARIANT of type VT_UI2|
VT_ARRAY. A complex
multidimensional uint16
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex 1-
by-1 int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

A multidimensional int32
matrix converts to a
VARIANT of type VT_I4|
VT_ARRAY. A complex
multidimensional int32
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex 1-
by-1 uint32 matrix
converts to a VARIANT of
type VT_DISPATCH.

A multidimensional uint32
matrix converts to a
VARIANT of type VT_UI4|
VT_ARRAY. A complex
multidimensional uint32
matrix converts to a
VARIANT of type
VT_DISPATCH.

Complex arrays are passed
to and from compiled
MATLAB functions using the
MWComplex class. (See
“Class MWComplex” on
page 10-21)

Function handle VT_EMPTY VT_EMPTY Not supported
Java class VT_EMPTY VT_EMPTY Not supported
User class VT_EMPTY VT_EMPTY Not supported
logical VT_Bool VT_Bool|VT_ARRAY

The following table lists the rules for conversion from COM to MATLAB.

 Data Conversion Rules

A-7

COM VARIANT to MATLAB Conversion Rules

VARIANT Type MATLAB Data Type
(scalar or array data)

Comments

VT_EMPTY Not applicable Empty array created.
VT_I1 int8
VT_UI1 uint8
VT_I2 int16
VT_UI2 uint16
VT_I4 int32
VT_UI4 uint32
VT_R4 single
VT_R8 double
VT_CY double
VT_BSTR char A VARIANT of type VT_BSTR converts to a 1-by-L

MATLAB char array, where L = the length of the
character vector to be converted. A VARIANT of
type VT_BSTR|VT_ARRAY converts to a MATLAB
cell array of 1-by-L char arrays.

VT_ERROR int32
VT_DATE double 1. VARIANT dates are stored as doubles starting at

midnight Dec. 31, 1899. The MATLAB dates are
stored as doubles starting at 0/0/00 00:00:00.
Therefore, a VARIANT date of 0.0 maps to a
MATLAB numeric date of 693960.0. VARIANT
dates are converted to MATLAB double types and
incremented by 693960.0.
2. VARIANT dates can be optionally converted to
character vectors. See “Data Conversion Flags” on
page A-12 for more information on type coercion.

VT_INT int32
VT_UINT uint32
VT_DECIMAL double
VT_BOOL logical

A Data Conversion Rules

A-8

VARIANT Type MATLAB Data Type
(scalar or array data)

Comments

VT_DISPATCH (varies) IDispatch* pointers are treated within the
context of what they point to. Objects must be
supported types with known data extraction and
conversion rules, or expose a generic Value
property that points to a single VARIANT type.
Data extracted from an object is converted based
upon the rules for the particular VARIANT
obtained.

Currently, support exists for Excel Range objects
as well as the MATLAB Compiler types MWStruct,
MWComplex, MWSparse, and MWArg.

<anything>|VT_BYREF (varies) Pointers to any of the basic types are processed
according to the rules for what they point to. The
resulting MATLAB array contains a deep copy of
the values.

<anything>|VT_ARRAY (varies) Multidimensional VARIANT arrays convert to
multidimensional MATLAB arrays, each element
converted according to the rules for the basic
types. Multidimensional VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert to
multidimensional cell arrays, each cell converted
according to the rules for that specific type.

 Data Conversion Rules

A-9

Array Formatting Flags
The MATLAB Compiler components have flags that control how array data is formatted in both
directions. Generally, you should develop client code that matches the intended inputs and outputs of
the MATLAB functions with the corresponding methods on the compiled COM objects, in accordance
with the rules listed in MATLAB to COM VARIANT Conversion Rules and COM VARIANT to MATLAB
Conversion Rules. In some cases this is not possible, for example, when existing MATLAB code is
used in conjunction with a third-party product like Excel.

The following table shows the array formatting flags.

A Array Formatting Flags

A-10

Array Formatting Flags

Flag Description
InputArrayFormat Defines the array formatting rule used on input arrays.

An input array is a VARIANT array, created by the client, sent as
an input parameter to a method call on a compiled COM object.
Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays as matrices.
When the input VARIANT is of type VT_ARRAY| type, where type
is any numeric type, this flag has no effect. When the input
VARIANT is of type VT_VARIANT|VT_ARRAY, VARIANTs in the
array are examined. If they are single-valued and homogeneous in
type, a MATLAB matrix of the appropriate type is produced
instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB cell
arrays.

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays, i.e.,
VARIANT arrays of VARIANTs, which themselves are arrays). The
default value for this flag is zero, which applies the
InputArrayFormat flag to the outermost array. When this flag is
greater than zero, e.g., equal to N, the formatting rule attempts to
apply itself to the Nth level of nesting.

OutputArrayFormat Defines the array formatting rule used on output arrays. An
output array is a MATLAB array, created by the compiled COM
object, sent as an output parameter from a method call to the
client. The values for this flag, mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell, cause the
same behavior as the corresponding InputArrayFormat flag
values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array indirection level
used with the OutputArrayFormat flag. This flag works exactly
like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output from a
method call is a range of cells in an Excel worksheet and the
output array size and shape is not known at the time of the call,
set this flag to True to resize each Excel range to fit the output
array.

TransposeOutput Set this flag to True to transpose the output arguments. Useful
when calling a MATLAB Compiler component from Excel where
the MATLAB function returns outputs as row vectors, and you
want the data in columns.

 Array Formatting Flags

A-11

Data Conversion Flags
In this section...
“CoerceNumericToType” on page A-12
“InputDateFormat” on page A-13
“OutputAsDate As Boolean” on page A-13
“DateBias As Long” on page A-13

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one specific MATLAB type.

VARIANT type codes affected by this flag are

VT_I1

VT_UI1

VT_I2

VT_UI2

VT_I4

VT_UI4

VT_R4

VT_R8

VT_CY

VT_DECIMAL

VT_INT

VT_UINT

VT_ERROR

VT_BOOL

VT_DATE

Valid values for this flag are

mwTypeDefault

mwTypeChar

mwTypeDouble

mwTypeSingle

A Data Conversion Flags

A-12

mwTypeLogical

mwTypeInt8

mwTypeUint8

mwTypeInt16

mwTypeUint16

mwTypeInt32

mwTypeUint32

The default for this flag, mwTypeDefault, converts numeric data according to the rules listed in
“Data Conversion Rules” on page A-2.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to the MATLAB dates. Valid values
for this flag are mwDateFormatNumeric (default) and mwDateFormatString. The default converts
VARIANT dates according to the rule listed in VARIANT Type Codes Supported. The
mwDateFormatString flag converts a VARIANT date to its character vector representation. This flag
only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a date. By default, numeric
dates that are output parameters from compiled MATLAB functions are passed as Doubles that need
to be decremented by the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to the MATLAB numeric date conversions. The
default value of this property is 693960, which represents the difference between the COM Date type
and the MATLAB numeric dates. This flag allows existing MATLAB code that already performs the
increment of numeric dates by 693960 to be used unchanged with the MATLAB Compiler
components. To process dates with such code, set this property to 0.

 Data Conversion Flags

A-13

Troubleshooting

B

Errors and Solutions
In this section...
“Excel Add-Ins Errors and Suggested Solutions” on page B-3
“Required Locations to Develop and Use Components” on page B-5
“Microsoft Excel Errors and Suggested Solutions” on page B-5
“Function Wizard Problems” on page B-6

This appendix provides a table showing errors you may encounter using MATLAB Compiler, probable
causes for these errors, and suggested solutions.

B Errors and Solutions

B-2

Excel Add-Ins Errors and Suggested Solutions
Errors, Warnings, Cause and Suggested Solutions

Message Probable Cause Suggested Solution
MBUILD.BAT: Error: The
chosen compiler does not
support building COM
objects.

The chosen compiler does
not support building COM
objects.

Rerun mbuild -setup -client
mbuild_com and choose a supported
compiler.

Error in
component_name.class_name:
Error getting data
conversion flags.

Usually caused by
mwcomutil.dll not being
registered.

Open a DOS window, change folders to
matlabroot\bin\win64 (matlabroot
represents the location of MATLAB on your
system), and run the command
mwregsvr mwcomutil.dll.

See “Add-In and COM Component
Registration” on page 2-11 for full details.

Error in VBAProject:
ActiveX component can't
create object.

• Project DLL is not
registered.

• An incompatible MATLAB
DLL exists somewhere on
the system path.

If the DLL is not registered, open a DOS
window, change folders to <projectdir>
\distrib (<projectdir> represents the
location of your project files), and run the
command:
mwregsvr <projectdll>.dll.

See “Add-In and COM Component
Registration” on page 2-11 for full details.

Error in VBAProject:
Automation error The
specified module could not
be found.

This usually occurs if
MATLAB is not on the system
path. This error message
occurs if you have more than
one version of MATLAB on
your system path.

Anytime you have multiple versions of
MATLAB, ensure that the newest version
of MATLAB appears on your path first. You
can verify that the newest version of
MATLAB is on the path first by typing
path at the DOS prompt. See the table
“Required Locations to Develop and Use
Components” on page B-5.

LoadLibrary
("component_name.dll")
failed - The specified
module could not be found.

You may get this error
message while registering
the project DLL from the
DOS prompt. This usually
occurs if MATLAB is not on
the system path.

See the table “Required Locations to
Develop and Use Components” on page B-
5.

Cannot recompile the M file
xxxx because it is already
in the library
libmmfile.mlib.

The name you have chosen
for your MATLAB file
duplicates the name of a
MATLAB file already in the
library of precompiled
MATLAB files.

Rename the MATLAB file, choosing a name
that does not duplicate the name of a
MATLAB file already in the library of
precompiled MATLAB files.

 Errors and Solutions

B-3

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

Message Probable Cause Suggested Solution
Arguments may only be
defaulted at the end of an
argument list.

You have modified the VB
script generated for MATLAB
Compiler and have not
provided one or more
arguments used in the
modified script.

Provide a value for any argument that
requires an explicit value. Arguments that
accept defaults appear at the end of the
argument list.

Unable to use accessibility screen-
readers or assistive technologies,
such as JAWS®,

Required files
JavaAccessBridge.dll
and
WindowsAccessBridge.dl
l no longer added
automatically to your
Windows path.

Add the following DLLs to your Windows
path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

Error in
class.method.version

This is a generic message,
but is sometimes seen when
there are conflicts in
architecture versions of
MATLAB and Microsoft
Excel.

See “Deployment Target Architectures and
Compatibility” on page 2-4 for detailed
information.

Error:
Error IMWDispatchDriver
"Method Load of object
IMWDispatchDriver failed"

Different versions of the
MATLAB Runtime and
MATLAB results in the
IMWDispatchDriver error.

Check for the current versions of MATLAB
and the MATLAB Runtime. Verify the
MATLAB version by typing the MATLAB
path in DOS prompt. If the versions do not
match update and install the new version
of the MATLAB Runtime that matches the
current MATLAB version.

Error in VBA project:
Method xxx of object
'IClass1' failed

Multiple versions of MATLAB
running on the system
results in this error.

Register the mwcomutil.dll and
mwcommgr.dll registry files. Open a DOS
window, cd to matlabroot\bin\win64
(matlabroot represents the location of
MATLAB on your system), and run the
command
mwregsvr mwcomutil.dll
mwregsvr mwcommgr.dll

Warning: File not found.
Excel primary interop
assembly is not found.

Visual Studio does not have
Visual Studio Tools

Install Visual Studio Tools while installing
Visual Studio to access all the files and
package deployable archive with Excel
Integration target.

B Errors and Solutions

B-4

Required Locations to Develop and Use Components
Component and Target Machine

Component Development Machine Target Machine
MATLAB Runtime Make sure that matlabroot\bin

\win64 appears on your system path
ahead of any other MATLAB
installations.
(matlabroot is your root MATLAB
folder.)

Verify that
<MATLAB_RUNTIME_INSTALL_DIR>
\<ver>\runtime\<arch> appears on
your system path. For more information,
see “Set MATLAB Runtime Path for Run-
Time Deployment”

Microsoft Excel Errors and Suggested Solutions
Error, Cause, and Solutions

Message Probable Cause Suggested Solution
The macros in this project are disabled.
Please refer to the online help or
documentation of the host application to
determine how to enable macros.
Note: Wording may vary depending
upon the version of Excel you are
running.

The macro security for Excel
is set to High.

Set Excel macro security to Medium on
the Security Level tab by doing the
following:

• For Microsoft Office 2003:

1 Click
Tools > Macro > Security.

2 For Security Level, select
Medium.

• For Microsoft Office 2007:

1 Click the 2007 Office button on
the Microsoft Office ribbon

().
2 Click Excel Options > Trust

Center > Trust Center
Settings > Macro Settings.

3 In Developer Macro Settings,
select Trust access to the
VBA project object model.

• For Microsoft Office 2010:

1 Click File > Options > Trust
Center > Trust Center
Settings > Macro Settings.

2 In Developer Macro Settings,
select Trust access to the
VBA project object model.

 Errors and Solutions

B-5

Function Wizard Problems
Problems, Cause, and Suggested Solutions

Problem Probable Cause Suggested Solution
The Function Wizard Help does not
appear.

The Function Wizard Help file
(mlfunction.chm) is not in the
same folder as the Function Wizard
add-in (mlfunction.xla).

Copy the Help file
(mlfunction.chm) into the same
folder as the add-in.

The Function Wizard did not
automatically import your .bas file,
and you have to create your macro
manually

The Function Wizard has
malfunctioned with an unspecified
error

1 Open Excel
2 Do one of the following:

• If you use Microsoft Office
2007 or 2010, click
Developer > Macros.

• If you use Microsoft Office
2003, click Tools > Macros
> Macro.

3 From the Visual Basic Editor,
select File > Import and select
the created VBA file from the
<project_dir>\distrib
folder.

Tip You may need to enable the
Developer menu item before
performing this step.

If you are using Office 365:

1 Click File.
2 Click Options and select

Customize Ribbon.
3 Under Customize the

Ribbon:, select Main Tabs and
check the Developer check
box.

If you are using Microsoft Office
2007 or 2010:

1 Click the Office button on the

Microsoft Office ribbon ()
or, in Office 2010, click File to
display the Office Backstage
View.

2 Click Excel Options.
3 In the Top Options for

Working With Excel area,

B Errors and Solutions

B-6

Problem Probable Cause Suggested Solution
You get an error when trying to
create a macro with the Function
Wizard

select Show Developer tab in
the Ribbon.

The message Failed to start
MATLAB appears instead of
Starting MATLAB... when
MATLAB is invoked by the Function
Wizard.

This message may appear if you
manually terminate the MATLAB
session that is invoked from the
Function Wizard. As a result, you
can no longer use the wizard's
MATLAB related features in your
current Excel session.

Save your work and restart
Microsoft Excel.

When I use CTRL + arrow keys to
select ranges with the Function
Wizard, once I select a function and
begin to select the function inputs,
keyboard navigation no longer
works in excel.

This behavior results from a bug in
Microsoft Excel.

If you must use arrow keys to select
ranges, apply the following fix from
the Microsoft Web site: https://
support.microsoft.com/kb/291110 .

 Errors and Solutions

B-7

https://support.microsoft.com/kb/291110
https://support.microsoft.com/kb/291110

Deployment Product Terms
A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively integrated into
a Microsoft Excel application. Add-ins are front-ends for COM components, usually written in some
form of Microsoft Visual Basic.

Application program interface (API) — A set of classes, methods, and interfaces that is used to
develop software applications. Typically an API is used to provide access to specific functionality. See
MWArray.

Application — An end user-system into which a deployed functions or solution is ultimately
integrated. Typically, the end goal for the deployment customer is integration of a deployed MATLAB
function into a larger enterprise environment application. The deployment products prepare the
MATLAB function for integration by wrapping MATLAB code with enterprise-compatible source code,
such as C, C++, C# (.NET), F#, and Java code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented languages, that
is a prototype for an object in an object-oriented language. It is analogous to a derived type in a
procedural language. A class is a set of objects which share a common structure and behavior.
Classes relate in a class hierarchy. One class is a specialization (a subclass) of another (one of its
superclasses) or comprises other classes. Some classes use other classes in a client-server
relationship. Abstract classes have no members, and concrete classes have one or more members.
Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB code involves
generating a binary that wraps around MATLAB code, enabling it to execute in various computing
environments. For example, when MATLAB code is compiled into a Java package, a Java wrapper
provides Java code that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a Microsoft Excel
add-in. In MATLAB Compiler SDK, an executable component, to be integrated with Microsoft COM
applications.

Console application — Any application that is executed from a system command prompt window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a MATLAB deployment
customer is using type-safe interfaces, data marshaling—as from mathematical data types to
MathWorks data types such as represented by the MWArray API—must be performed manually, often
at great cost.

B Deployment Product Terms

B-8

Deploy — The act of integrating MATLAB code into a larger-scale computing environment, usually to
an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary generated by
MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable package. All MATLAB-based
content in the deployable archive uses the Advanced Encryption Standard (AES) cryptosystem. See
“Additional Details”.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept for Windows.
Using DLLs is much preferred over the previous technology of static (or non-dynamic) libraries,
which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and sometimes
called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used to hold data.
Properties allow users to access class variables as if they were accessing member fields directly,
while actually implementing that access through a class method.

I

Integration — Combining deployed MATLAB code's functionality with functionality that currently
exists in an enterprise application. For example, a customer creates a mathematical model to forecast
trends in certain commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance) the deployed financial
model must be integrated with existing C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server software, see
MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java Archive) aggregates many files into
one. Software developers use JARs to distribute Java applications or libraries, in the form of classes
and associated metadata and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built into MATLAB
software.

JDK — The Java Development Kit is a product which provides the environment required for
programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK) required to run Java
programs. It comprises the Java Virtual Machine, the Java platform core classes, and supporting files.

 Deployment Product Terms

B-9

It does not include the compiler, debugger, or other tools present in the JDK™. The JRE™ is the
smallest set of executables and files that constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when added
vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries. MATLAB uses these
libraries to enable the execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production Server
software, you have the option of specifying more than one MATLAB Runtime session, using the --
num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software, clients are
applications written in a language supported by MATLAB Production Server that call deployed
functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production Server
containing at least one server and one client. Each configuration of the software usually contains a
unique set of values in the server configuration file, main_config (MATLAB Production Server).

MATLAB Production Server Server Instance — A logical server configuration created using the mps-
new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of MATLAB programs
within your production systems, enabling you to incorporate numerical analytics in enterprise
applications. When you use this software, web, database, and enterprise applications connect to
MATLAB programs running on MATLAB Production Server via a lightweight client library, isolating
the MATLAB programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source files into
standalone applications or shared libraries. For more information, see the mbuild function reference
page.

mcc — The MATLAB command that invokes the compiler. It is the command-line equivalent of using
the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative information to
a .NET class. For example, in the context of client programming with MATLAB Production Server
software, you specify method attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of standard
mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface (API) for exchanging
data between your application and MATLAB. Using MWArray, you marshal data from traditional
mathematical types to a form that can be processed and understood by MATLAB data type mxArray.

B Deployment Product Terms

B-10

There are different implementations of the MWArray proxy for each application programming
language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB Runtime and
other files, into an installer that can be distributed to others. The compiler apps place the installer in
the for_redistribution subfolder. In addition to the installer, the compiler apps generate a
number of lose artifacts that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB Production Server
software. Servers created with the software do not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is scheduled on a pool, or
group, of available threads. The server configuration file option --num-threads sets the size of that
pool (the number of available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error messages
relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually are written to
automate repetitive operations through computer processing. Enterprise system applications usually
consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an interface to
something else. For example, MWArray is a proxy for programmers who need to access the
underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast loading into
Windows applications. Dynamic-link libraries (DLLs) are Microsoft's implementation of the shared
library concept for Microsoft Windows.

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can create a shared
MATLAB Runtime instance, also known as a singleton. When you invoke MATLAB Compiler with the -
S option through the compiler (using either mcc or a compiler app), a single MATLAB Runtime
instance is created for each COM component or Java package in an application. You reuse this
instance by sharing it among all subsequent class instances. Such sharing results in more efficient
memory usage and eliminates the MATLAB Runtime startup cost in each subsequent class
instantiation. All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET assemblies.
MATLAB Compiler creates singletons by default for the COM components used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB functions often carry
state in the form of variable values. The MATLAB workspace itself also maintains information about
global variables and path settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that use such functions.

 Deployment Product Terms

B-11

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you access using
textual field designators. Fields are data containers that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as Microsoft
Visual Studio.

T

Thread — A portion of a program that can run independently of and concurrently with other portions
of the program. See pool for additional information on managing the number of processing threads
available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the MWArray type
from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file used to
distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag libraries, and static
web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web. Using the
WebFigures feature, you display MATLAB figures on a website for graphical manipulation by end
users. This enables them to use their graphical applications from anywhere on the web, without the
need to download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication Foundation™ is an
application programming interface in the .NET Framework for building connected, service-oriented,
web-centric applications. WCF is designed in accordance with service oriented architecture
principles to support distributed computing where services are consumed by client applications.

B Deployment Product Terms

B-12

	Create Excel Add-Ins
	Create Excel Add-In
	Create Add-In Containing a Custom Function for Use Within Excel
	Create a MATLAB Function
	Create Excel Add-In Using Library Compiler App
	Create Excel Add-In Using compiler.build.excelAddIn
	Test the Add-In in Excel

	Getting Started
	How Excel Add-In for MATLAB Compiler Works
	MATLAB Compiler for Microsoft Excel Add-In Prerequisites
	Your Role in the Deployment Process
	Products, Compilers, and IDE Installation
	Macro Execution Security Levels in Microsoft Excel
	Deployment Target Architectures and Compatibility
	Dependency and Non-Compilable Code Considerations
	For More Information

	Choosing Function Deployment Workflow
	Is Your Function Ready for Deployment?
	Other Examples

	Create Excel Add-In from MATLAB
	Create Function in MATLAB
	Create Excel Add-In Using Library Compiler App
	Package the Application

	Integrate an Add-In and COM Component with Microsoft Excel
	Files Necessary for Deployment
	Add-In and COM Component Registration
	COM Component Incorporation into Microsoft Excel using the Function Wizard
	MATLAB Runtime
	Add-In Installation and Distribution

	Next Steps

	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Determine Data Type of Command-Line Input (For Packaging Standalone Applications Only)
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings

	Manage Support Packages
	Using a Compiler App
	Using the Command Line

	The Function Wizard
	Execute Functions and Create Macros
	What Can the Function Wizard Do for Me?
	Installation of the Function Wizard
	Function Wizard Start-Up
	Workflow Selection for MATLAB Functions Ready for Deployment
	Defining Functions Ready to Execute
	Function Execution
	Macro Creation
	Macro Execution
	Microsoft Visual Basic Code Access (Optional Advanced Task)
	For More Information

	End-to-End Deployment of MATLAB Function
	What Can the Function Wizard Do for Me?
	Example File Copying
	mymagic Testing
	Installation of the Function Wizard
	Function Wizard Start-Up
	Workflow Selection for Prototyping and Debugging MATLAB Functions
	New MATLAB Function Definition
	MATLAB Function Prototyping and Debugging
	Function Execution from MATLAB
	Microsoft Excel Add-In and Macro Creation Using the Function Wizard
	Function Execution from the Deployed Component
	Macro Execution
	Microsoft Excel Add-In and Macro Packaging using the Function Wizard
	Microsoft Visual Basic Code Access (Optional Advanced Task)
	For More Information

	MATLAB Code Deployment
	How Does MATLAB Deploy Functions?
	Dependency Analysis Using MATLAB Compiler
	Function Dependency
	Data File Dependency
	Exclude Files From Package

	MEX-Files, DLLs, or Shared Libraries
	Deployable Archive
	Additional Details

	Write Deployable MATLAB Code
	Packaged Applications Do Not Process MATLAB Files at Run Time
	Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files
	Use isdeployed Functions To Execute Deployment-Specific Code Paths
	Gradually Refactor Applications That Depend on Noncompilable Functions
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	Calling Shared Libraries in Deployed Applications
	MATLAB Data Files in Compiled Applications
	Explicitly Including MATLAB Data files Using the %#function Pragma
	Load and Save Functions

	Microsoft Excel Add-In Creation, Function Execution, and Deployment
	Supported Compilation Targets
	Microsoft Excel Add-In
	What Are Excel Add-In Components and When Should You Create Them?
	MATLAB Compiler Limitations

	The Library Compiler and the Command Line Interface
	Using Graphical Interface
	Using Command Line Interface

	Create Macros from MATLAB Functions
	Create Add-Ins and Macros with Single and Multiple Outputs
	Work with Variable-Length Inputs and Outputs

	Execute Add-In and Graphical Function
	Execute an Add-In to Validate Nongraphical Function Output
	Execute a Graphical Function
	Create Dialog Box and Error Message Macros

	Microsoft Excel Add-In Integration
	Overview of the Integration Process
	Integrate Components Using Visual Basic Application
	When to Use a Formula Function or a Subroutine
	Initialize MATLAB Compiler Libraries with Microsoft Excel
	Create an Instance of a Class
	Call the Methods of a Class Instance
	Program with Variable Arguments
	Modify Flags
	Handle Errors During a Method Call

	Build and Integrate Spectral Analysis Functions
	Overview
	Building the Component
	Integrate the Component Using VBA
	Test the Add-In
	Package and Distribute the Add-In
	Install the Add-In

	For More Information

	Distribution to End Users
	Distribute Your Add-Ins and COM Components to End Users
	MATLAB Runtime

	Distribute Visual Basic Application
	Calling Compiled MATLAB Functions from Microsoft Excel
	Improve Data Access Using the MATLAB Runtime User Data Interface and COM Components
	MATLAB Runtime Component Cache and Deployable Archive Embedding
	MATLAB Runtime Options

	For More Information

	Functions
	compiler.build.excelAddIn
	compiler.build.ExcelAddInOptions
	componentinfo
	deploytool
	libraryCompiler
	mcc

	Utility Library for Microsoft COM Components
	Reference Utility Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWInitApplicationWithMCROptions(pApp As Object, [mcrOptionList])
	Function IsMCRJVMEnabled() As Boolean
	Function IsMCRInitialized() As Boolean
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean = False], [pVar0], [pVar1], ..., [pVar31])
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Apps
	Library Compiler

	Data Conversion
	Data Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Troubleshooting
	Errors and Solutions
	Excel Add-Ins Errors and Suggested Solutions
	Required Locations to Develop and Use Components
	Microsoft Excel Errors and Suggested Solutions
	Function Wizard Problems

	Deployment Product Terms

